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Chapter 1

Overview

This document is targeted for the ASIC designer who is integrating a version of a MIPS32™ 4KE™ processor co
the system ASIC. This document is applicable to both those integrators who are using a hard core and those w
integrating a soft core.

In addition to this overview chapter, the document contains the following chapters:

• Chapter 2, “Signal Description,” on page 3 describes the pins of the core.

• Chapter 3, “EC Interface,” on page 19 describes the EC interface protocol used by the core.

• Chapter 4, “EJTAG Interface,” on page 35 discusses the EJTAG interface used by the core, including the opt
EJTAG TAP controller and the PDtrace interface.

• Chapter 5, “Coprocessor Interface,” on page 43 describes the Coprocessor 2 interface and protocol used by

• Chapter 6, “Scratchpad RAM Interface,” on page 59 describes the Scratchpad RAM interface that may option
present on the core.

• Chapter 7, “Performance Monitoring Interface,” on page 83 describes the Performance Monitor interface that m
used to count interesting events on the core.

• Chapter 8, “VMC Simulation Model,” on page 87 describes models that can be used in place of the 4KE core
model is described in this chapter, a cycle-exact simulation model compiled with the Synopsys Verilog Mode
Compiler tool (VMC). The VMC model provides a cycle-exact model of a 4KE core that is used as a golden
reference model in the customer verification environment for soft core licensees. It is also used by hard core
integrators and others who do not receive the RTL to simulate with the 4KE core.

• Chapter 9, “Clocking, Reset and Power,” on page 97 covers issues related to handling the clock insertion dela
4KE core. Additionally, the hardware reset requirements of the core, as well as power management techniqu
discussed.

• Chapter 10, “Design For Test Features,” on page 101 discusses general DFT features which may be preset 
4KE core. Details are specific to a particular implementation of the core.

1.1 Environment Variable Setup

Some UNIX paths described in the document refer to theMIPS_PROJECTenvironment variable, which should point to
the top level of the 4KE core deliverables. To set this variable:

% cd <release directory>
% setenv MIPS_PROJECT ‘pwd‘ # Note that these are back-ticks, not single quotes
MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00 1
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Chapter 2

Signal Description

This chapter describes the signals on a MIPS32™ 4KE™ processor core. Only naming conventions and actua
names are listed in this chapter. The specific interface protocols to which each signal adheres are described in su
chapters.

This chapter contains the following sections:

• Section 2.1, "Naming Conventions"

• Section 2.2, "Detailed Signal Descriptions"

2.1 Naming Conventions

The signal direction key for the signal descriptions is shown inTable 2-1 below.

The names of interface signals present on a 4KE core are prefixed with a unique string, according to their prim
function.Table 2-2 defines the prefixes used for 4KE core interface signals.

Table 2-1 Signal Type Key

Type Description

In Input to the core, unless otherwise noted, sampled on the rising edge of the appropriate clock
signal.

Out Output of the core, unless otherwise noted, driven at the rising edge of the appropriate clock
signal.

AIn Asynchronous inputs that are synchronized by the core.

SIn Static input to the core. These signals control configuration options and are normally tied to
either power or ground. They must not change state whileSI_ColdReset is deasserted.

SOut Static output from the core. These signals control configuration options in an optional connected
Coprocessor 2. These signals are static and do not ever change state.

Table 2-2 Signal Prefix Key

Prefix Description

EB_ Signals directly related to the EC interface.

SI_ General system interface signals, which are not part of the EC interface.

EJ_ Signals related to the EJTAG interface.

TC_ Signals related to the EJTAG Trace interface.

CP2_ Signals related to the Coprocessor 2 interface.

PM_ Performance monitoring signals.

{I,D}SP_ Instruction/Data ScratchPad RAM interfaces
MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00 3
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Generally, most signals have active-high assertion levels if not otherwise specified in the tables. Signals ending
suffix “_N” are active low.

2.2 Detailed Signal Descriptions

All core signals are listed inTable 2-3 below. Note that the signals are grouped by logical function, not by expecte
physical location. All signals, with the exception ofEJ_TRST_N, are active-high signals.EJ_DINT andSI_NMI go
through edge-detection logic so that only one exception is taken each time they are asserted.

gscan/Bist Signals related to design-for-test features, either scan or memory Built-In-Self-Test (BIST).

gmb Signals related to integrated memory BIST.

Table 2-3 Signal Descriptions

Signal Name Type Description

System Interface: Refer to Chapter 9, “Clocking, Reset and Power,” on page 97 for more details

Clock Signals: Refer to Section 9.1, "Clocking" on page 97 for more details

SI_ClkIn In Clock input. All inputs and outputs, except a few of the EJTAG signals, are
sampled or asserted relative to the rising edge of this signal.

SI_ClkOut Out Reference clock. This clock signal provides a reference for de-skewing any
clock insertion delay created by the internal clock buffering in the core.

Reset Signals: Refer to Section 9.2, "Reset and Hardware Initialization" on page 98 for a description of the various types of
reset.

SI_ColdReset AIn Hard/Cold reset signal. Causes a Reset Exception in the core.

SI_NMI AIn
Non-maskable Interrupt. An edge detect is used on this signal. When this
signal is sampled asserted (high) one clock after being sampled deasserted, an
NMI is posted to the core.

SI_Reset AIn Soft/Warm reset signal. Causes a SoftReset Exception in the core.

Power Management Signals: See Section 9.3, "Power Management" on page 99 for more details

SI_ERL Out
This signal reflects the state of the ERL bit (2) in the CP0Status register and
indicates the error level. The core assertsSI_ERL whenever a Reset, Soft
Reset, or NMI exception is taken.

SI_EXL Out
This signal reflects the state of the EXL bit (1) in the CP0Status register and
indicates the exception level. The core assertsSI_EXLwhenever any exception
other than a Reset, Soft Reset, NMI, or Debug exception is taken.

SI_RP Out
This signal reflects the state of the RP bit (27) in the CP0Status register.
Software can write this bit to indicate that the device can enter a reduced power
mode.

SI_Sleep Out
This signal is asserted by the core whenever the WAIT instruction is executed.
The assertion of this signal indicates that the clock has stopped and that the
core is waiting for an interrupt.

Interrupt Signals:

SI_EICPresent SIn Indicates whether an external interrupt controller is present. Value is visible to
software in theConfig3VEIC register field.

Table 2-2 Signal Prefix Key

Prefix Description
4 MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00
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2.2 Detailed Signal Descriptions
SI_EISS[3:0] In General purpose register shadow set number to be used when servicing an
interrupt in EIC interrupt mode.

SI_IAck Out

Interrupt acknowledge indication for use in external interrupt controller mode.
This signal is active for a singleSI_ClkIn cycle when an interrupt is taken.
When the processor initiates the interrupt exception, it loads the value of the
SI_Int[5:0] pins into theCauseRIPL field (overlaid withCauseIP7..IP2), and
signals the external interrupt controller to notify it that the current interrupt
request is being serviced. This allows the controller to advance to another
pending higher-priority interrupt, if desired.

SI_Int[5:0] In/AIn

Active high Interrupt pins. These signals are driven by external logic and when
asserted indicate an interrupt exception to the core. The interpretation of these
signals depends on the interrupt mode in which the core is operating; the
interrupt mode is selected by software.

TheSI_Int signals go through synchronization logic and can be asserted
asynchronously toSI_ClkIn.In External Interrupt Controller (EIC) mode,
however, the interrupt pins are interpreted as an encoded value, so they must
be asserted synchronously toSI_ClkInto guarantee that all bits are received by
the core in a particular cycle.

The interrupt pins are level sensitive and should remain asserted until the
interrupt has been serviced.

In Release 1 Interrupt Compatibility mode:

• All 6 interrupt pins have the same priority as far as the hardware is
concerned.

• Interrupts are non-vectored.

In Vectored Interrupt (VI) mode:

• TheSI_Int pins are interpreted as individual hardware interrupt requests.

• Internally, the core prioritizes the hardware interrupts and chooses an
interrupt vector.

In External Interrupt Controller (EIC) mode:

• An external block prioritizes its various interrupt requests and produces a
vector number of the highest priority interrupt to be serviced.

• The vector number is driven on theSI_Int pins, and is treated as a 6-bit
encoded value in the range of 0..63.

• When the core starts the interrupt exception, signaled by the assertion of
SI_IAck, it loads the value of theSI_Int[5:0] pins into theCauseRIPL field
(overlaid withCauseIP7..IP2). The interrupt controller can then signal
another interrupt.

SI_IPL[5:0] Out
Current interrupt priority level from theStatusIPL register field, provided for
use by an external interrupt controller. This value is updated wheneverSI_IAck
is asserted.

SI_IPTI[2:0] SIn
Indicates theSI_Int hardware interrupt pin that the timer interrupt pin
(SI_TimerInt) is combined with external to the core. The value of this bus is
visible to software in theIntCtlIPTI register field.

SI_SWInt[1:0] Out
Software interrupt request. These signals represent the value in theIP[1:0]
field of theCause register. They are provided for use by an external interrupt
controller.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00 5
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SI_TimerInt Out

Timer interrupt indication. This signal is asserted whenever theCount and
Compare registers match and is deasserted when theCompare register is
written. This hardware pin represents the value of theCauseTI register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:

In order to generate a timer interrupt, theSI_TimerInt signal needs to be
brought back into the 4KE core on one of the sixSI_Int interrupt pins in a
system-dependent manner. Traditionally, this has been accomplished by
muxingSI_TimerIntwith SI_Int[5]. ExposingSI_TimerIntas an output allows
more flexibility for the system designer. Timer interrupts can be muxed or
ORed into one of the interrupts, as desired in a particular system. TheSI_Int
hardware interrupt pin with which theSI_TimerInt signal is merged is
indicated via theSI_IPTI static input pins.

For External Interrupt Controller (EIC) mode:

TheSI_TimerInt signal is provided to the external interrupt controller, which
then prioritizes the timer interrupt with all other interrupt sources, as desired.
The controller then encodes the desired interrupt value on theSI_Int pins.
SinceSI_Int is usually encoded, theSI_IPTI pins are not meaningful in EIC
mode.

Configuration Inputs:

SI_CPUNum[9:0] SIn

Unique identifier to specify an individual core in a multi-processor system.
The hardware value specified on these pins is available in theEBaseCPUNum
register field, so it can be used by software to distinguish a particular processor.
In a single processor system, this value should be set to zero.

SI_Endian SIn

Indicates the base endianness of the core. Value is visible to software in the
Config0BE register field.

SI_MergeMode[1:0] SIn

The state of these signals determines whether merging is allowed in the
16-byte collapsing write buffer. Value ofSI_MergeMode[0] is visible to
software in theConfig0MM register field.

SI_SimpleBE[1:0] SIn

The state of these signals can constrain the core to only generate certain byte
enables on EC interface transactions. This eases connection to some existing
bus standards. Value ofSI_SimpleBE[0] is visible in theConfig0SB register
field. See Section 3.6, "SimpleBE Mode" on page 32 for more details.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

SI_Endian Base Endian Mode

0 Little Endian

1 Big Endian

SI_MergeMode[1:0] Merge Mode

002 No Merge

012 Reserved

102 Full Merge

112 Reserved

SI_SimpleBE[1:0] Byte Enable Mode

002 All BEs allowed

012
Naturally aligned bytes, halfwords,

and words only

102 Reserved

112 Reserved
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2.2 Detailed Signal Descriptions
EC Interface Refer to Chapter 3, “EC Interface,” on page 19 for more details.

EB_ARdy In
Indicates whether the target is ready for a new address. The core will not
complete the address phase of a new bus transaction until the clock cycle after
EB_ARdy is sampled asserted.

EB_AValid Out
When asserted, indicates that the values on the address bus and access types
lines are valid, signifying the beginning of a new bus transaction.EB_AValid
is always be valid (unqualified).

EB_Instr Out When asserted, indicates that the transaction is an instruction fetch not a data
reference.EB_Instr is only valid whenEB_AValid is asserted.

EB_Write Out When asserted, indicates that the current transaction is a write. This signal is
only valid whenEB_AValid is asserted.

EB_Burst Out

When asserted, indicates that the current transaction is part of a cache fill or a
write burst. Note that there is redundant information contained inEB_Burst,
EB_BFirst, EB_BLast, andEB_BLen[1:0]. This is done to simplify the system
design - the information can be used in whatever form is easiest.

EB_BFirst Out When asserted, indicates beginning of the burst.EB_BFirst is always valid
(unqualified).

EB_BLast Out When asserted, indicates end of burst.EB_BLast is always valid.

EB_BLen[1:0] Out

Indicates length of the burst. This signal is only valid when EB_AValid is
asserted.

EB_SBlock SIn
When sampled asserted, sub block ordering is used. When sampled deasserted,
sequential addressing is used. Value is visible to software in theBMfield of the
Config0 register.

EB_BE[3:0] Out

Indicates which bytes of theEB_RData[31:0]or EB_WData[31:0]buses are
involved in the current transaction. If anEB_BE[3:0] signal is asserted, the
associated byte is being read or written.EB_BE[3:0] lines are only valid while
EB_AValid is asserted.
.

EB_A[35:2] Out Address lines for external bus. Only valid whenEB_AValid is asserted.
EB_A[35:32] are tied to 00002 in the 4KE cores.

EB_WData[31:0] Out Output data for writes.

EB_RData[31:0] In Input data for reads.

EB_RdVal In
Indicates that the target is driving read data onEB_RData lines.EB_RdVal
must always be valid.EB_RdValmay never be sampled asserted until the rising
edge after the correspondingEB_ARdy was sampled asserted.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

EB_BLen[1:0] Burst Length

002 reserved

012 4

102 reserved

112 reserved

EB_BE[3:0]
Signal

Read Data Bits Sampled Write Data Bits
Driven Valid

EB_BE[0] EB_RData[7:0] EB_WData[7:0]

EB_BE[1] EB_RData[15:8] EB_WData[15:8]

EB_BE[2] EB_RData[23:16] EB_WData[23:16]

EB_BE[3] EB_RData[31:24] EB_WData[31:24]
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Chapter 2 Signal Description

s,
EB_WDRdy In
Indicates that the target of a write is ready. TheEB_WDatalines can change in
the next clock cycle.EB_WDRdy may not be sampled until the rising edge
where the correspondingEB_ARdy is sampled asserted.

EB_RBErr In

Bus error indicator for read transactions.EB_RBErris sampled on every rising
clock edge until an active sampling ofEB_RdVal. EB_RBErr sampled with
assertedEB_RdVal indicates a bus error during read.EB_RBErr must be
deasserted in idle phases.

EB_WBErr In
Bus error indicator for write transactions.EB_WBErris sampled at the rising
clock edge following an active sample ofEB_WDRdy. EB_WBErr must be
deasserted in idle phases.

EB_EWBE In

Indicates that any external write buffers are empty. The external write buffers
must deassertEB_EWBE in the cycle after the correspondingEB_WDRdy is
asserted and keepEB_EWBE deasserted until the external write buffers are
empty. See Section 3.7, "External Write Buffers" on page 32 for more details.

EB_WWBE Out When asserted, indicates that the core is waiting for external write buffers to
empty. See Section 3.7, "External Write Buffers" on page 32 for more details.

EJTAG Interface:  Refer to Chapter 4, “EJTAG Interface,” on page 35 for more details.

TAP Interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core does not
implement the TAP controller.

EJ_TRST_N In Active low Test Reset Input (TRST*) for the EJTAG TAP.EJ_TRST_Nmust be
asserted at power-up to cause the TAP controller to be reset.

EJ_TCK In Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS In Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI In Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO Out Test Data Output (TDO) for the EJTAG TAP.

EJ_TDOzstate Out

Drive indication for the output ofTDO for the EJTAG TAP at chip level:
1: TheTDO output at chip level must be in Z-state
0: TheTDO output at chip level must be driven to the value ofEJ_TDO.

IEEE Standard 1149.1-1990 definesTDOas a 3-stated signal. To avoid having
a 3-state core output, the 4KE core outputs this signal to drive an external
3-state buffer.

Debug Interrupt:

EJ_DINTsup SIn

Value of DINTsup for the Implementation register. A 1 on this signal indicates
that the EJTAG probe can useDINT signal to interrupt the processor. This
signal should be asserted if theDINT pin on the EJTAG probe header is
connected to theEJ_DINT input of the core.

EJ_DINT In
Debug exception request when this signal is asserted in a CPU clock period
after being deasserted in the previous CPU clock period. The request is cleared
when debug mode is entered. Requests when in debug mode are ignored.

Debug Mode Indication

EJ_DebugM Out

Asserted when the core is in Debug Mode. This can be used to bring the core
out of a low power mode (see Section 9.3, "Power Management" on page 99
for more details). In systems with multiple processor cores, this signal can be
used to synchronize the cores when debugging.

Device ID Bits: These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not
implemented, then these inputs are not connected. These inputs are always available for soft core customers. On hard core
the core “hardener” may set these inputs to their own values.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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2.2 Detailed Signal Descriptions
EJ_ManufID[10:0] SIn

Value of theDevice IDManufID register field. As per IEEE 1149.1-1990 section
11.2, the manufacturer identity code shall be a compressed form of JEDEC
standard manufacturer’s identification code in the JEDEC Publications106,
which can be found at: http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by
discarding the parity bit. ManufID[10:7] bits provide a binary count of the
number of bytes in the JEDEC code that contain the continuation character
(0x7F). Where the number of continuations characters exceeds 15, these 4 bits
contain the modulo-16 count of the number of continuation characters.

EJ_PartNumber[15:0] SIn Value of theDevice IDPartNumber register field.

EJ_Version[3:0] SIn Value of theDevice IDVersion register field.

System Implementation Dependent Outputs: These signals come from EJTAG control registers. They have no effect on the
core, but can be used to give EJTAG debugging software additional control over the system.

EJ_SRstE Out
Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft
resets. If this signal is deasserted, none, some, or all soft reset sources are
masked.

EJ_PerRst Out Peripheral Reset. EJTAG can assert this signal to request the reset of some or
all of the peripheral devices in the system.

EJ_PrRst Out Processor Reset. EJTAG can assert this signal to request that the core be reset.
This can be fed into theSI_Reset signal

TCtrace Interface: These signals are the connected to the Trace Capture Block (TCB) inside the core. Except for the
TC_ChipTrigInand theTC_ChipTrigOut, all of the following pins will normally be connected to an on-chip Probe Interface
Block (PIB). The PIB is placed close to the physical probe pins, and will handle the final off-chip transmission on the trace
port.

TC_PibPresent SIn Must be asserted when a PIB is attached to the TC Interface. When de-asserted
(low) all the other inputs are disregarded.

TC_TrEnable Out Trace Enable, when asserted the PIB must start the TR_Clk output running and
can expect valid data on all other outputs.

TC_ClockRatio[2:0] Out

Clock ratio. This is the software-set clock-ratio from theTCBCONTROLBCR
register field. The value will be within the boundaries defined byTC_CRMax
andTC_CRMin. The table below shows the encoded values for clock ratio.

TC_CRMax[2:0] SIn
Maximum Clock ratio supported. This static input sets theTCBCONFIGCRMax
register field. It defines the capabilities of the PIB module. This field
determines the maximum value ofTC_ClockRatio.

TC_CRMin[2:0] SIn
Minimum Clock ratio supported. This input sets theTCBCONFIGCRMin
register field. It defines the capabilities of the PIB module. This field
determines the minimum value ofTC_ClockRatio.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

TC_ClockRatio Clock Ratio

000 8:1 (Trace clock is eight times the core clock)

001 4:1 (Trace clock is four times the core clock)

010 2:1 (Trace clock is double the core clock)

011 1:1 (Trace clock is same as the core clock)

100 1:2 (Trace clock is one half the core clock)

101 1:4 (Trace clock is one fourth the core clock)

110 1:6 (Trace clock is one sixth the core clock)

111 1:8 (Trace clock is one eighth the core clock)
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Chapter 2 Signal Description
TC_ProbeWidth[1:0] SIn

This static input will set theTCBCONFIGPW register field. It specifies the
number of actual data trace pins on the probe (4, 8 or 16).

If this interface is not driving a PIB module, but some chip-level TCB-like
module, then this field should be set to 2’b11 (reserved value forPW).

TC_DataBits[2:0] In

This input identifies the number of bits picked up by the probe interface
module (PIB) in each “cycle”.

If TC_ClockRatio indicates a clock-ratio higher than 1:2, then clock
multiplication in the Probe logic is used. The “cycle” is equal to each core
clock cycle onSI_ClkIn.

If TC_ClockRatio indicates a clock-ratio lower than or equal to 1:2, then
“cycle” is (clock-ratio * 2) of the core clock cycle. For example, with a clock
ratio of 1:2, a “cycle” is equal to core clock cycle; with a clock ratio of 1:4, a
“cycle” is equal to one half of core clock cycle.

This input controls the down-shifting amount and frequency of the trace word
onTC_Data[63:0]. The bit width and the correspondingTC_DataBitsvalue is
shown in the table below.

This input might change as the value onTC_ClockRatio[2:0] changes.

TC_Valid Out Asserted when a new trace word is started on theTC_Data[63:0] signals.
TC_Valid is only asserted whenTC_DataBits is 100.

TC_Stall In

When asserted, an newTC_Validin the following cycle is stalled.TC_Validis
still asserted, but theTC_Datavalue andTC_Validis kept static, until the cycle
afterTC_Stall is sampled low.

TC_Stallis only sampled in the cycle before a newTC_Validcycle. And only
whenTC_DataBits is 100, indicating full word ofTC_Data.

TC_Calibrate Out

This signal is asserted when the Cal bit inTCBCONTROLB is set.

For a simple PIB which only serves one TCB, this pin can be ignored. For a
multi-core capable PIB which also usesTC_ValidandTC_Stall, the PIB must
start producing the calibration pattern when this signal is asserted.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

TC_ProbeWidth Number physical data
pin on PIB

00 4 bits

01 8 bits

10 16 bits

11 Not directly to PIB

TC_DataBits[2:0] Probe uses following bits
from TC_Data each cycle

000 TC_Data[3:0]

001 TC_Data[7:0]

010 TC_Data[15:0]

011 TC_Data[31:0]

100 TC_Data[63:0]

Others Unused
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2.2 Detailed Signal Descriptions
TC_Data[63:0] Out

Trace word data. The value on this 64-bit interface is shifted down as indicated
in TC_DataBits[2:0]. First cycle where a new TW is valid on all the bits and
TC_DataBits[2:0] is 100,TC_Valid is also asserted.

The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this
output bus. N is the number of bits picked up by the PIB in each core clock
cycle. For clock ratios 1:2 and lower, N is equal to the number of physical trace
pins (legal values of N are 4, 8, or 16). For higher clock ratios, N is larger than
the number of physical trace pins.

TC_ProbeTrigIn In Rising edge trigger input. The source should be the Probe Trigger input. The
input is considered asynchronous, i.e., double registered in the core.

TC_ProbeTrigOut Out
Single cycle (relative to the “cycle” defined the description ofTC_DataBits)
high strobe, trigger output. The target of this trigger is intended to be the
external probe’s trigger output.

TC_ChipTrigIn In Rising edge trigger input. The source should be on-chip. The input is
considered asynchronous, i.e., double registered in the core.

TC_ChipTrigOut Out Single cycle (relative to core clock) high strobe, trigger output. The target of
this trigger is intended to be an on-chip unit.

Coprocessor 2 Interface: Refer to Chapter 5, “Coprocessor Interface,” on page 43 for more details.

Instruction Dispatch: These signals are used to transfer an instruction for the 4KE core to the COP2 coprocessor.

CP2_ir_0[31:0] Out Coprocessor Arithmetic and To/From Instruction Word. Valid in the
cycle beforeCP2_as_0, CP2_ts_0 or CP2_fs_0 is asserted.

CP2_irenable_0 Out

Enable Instruction Registering.When deasserted, no instruction strobes
will be asserted in the following cycle. When asserted, theremay be an
instruction strobe asserted in the following cycle. Instruction strobes include
CP2_as_0, CP2_ts_0, CP2_fs_0.

Note: This is the only late signal in the interface. The intended function is to
use this signal as a clock gater on the capture latches in the coprocessor for
CP2_ir_0[31:0].

CP2_as_0 Out

Coprocessor 2 Arithmetic Instruction Strobe.Asserted in the cycle after an
arithmetic Coprocessor 2 instruction is available onCP2_ir_0[31:0]. If
CP2_abusy_0 was asserted in the previous cycle, this signal may not be
asserted. This signal must never be asserted in the same cycle thatCP2_ts_0
or CP2_fs_0 is asserted.

CP2_abusy_0 In
Coprocessor 2 Arithmetic Busy.When asserted, a Coprocessor2 arithmetic
instruction may not be dispatched.CP2_as_0can not be asserted in the cycle
after this signal is asserted.

CP2_ts_0 Out

Coprocessor 2 To Strobe.Asserted in the cycle after a To COP2 Op
instruction is available onCP2_ir_0[31:0]. If CP2_tbusy was asserted in the
previous cycle, this signal will not be asserted. This signal can never be
asserted in the same cycle thatCP2_as_0 or CP2_fs_0 is asserted.

CP2_tbusy_0 In
To Coprocessor 2 Busy.When asserted, a To COP2 Op must not be
dispatched.CP2_ts_0 may not be asserted in the cycle after this signal is
asserted.

CP2_fs_0 Out

Coprocessor 2 From Strobe.Asserted in the cycle after a From COP2 Op
instruction is available onCP2_ir_0[31:0]. If CP2_fbusy_0 was asserted in
the previous cycle, this signal must not be asserted. This signal may never be
asserted in the same cycle thatCP2_as_0 or CP2_ts_0 is asserted.

CP2_fbusy_0 In
From Coprocessor 2 Busy.When asserted, a From COP2 Op may not be
dispatched.CP2_fs_0 may not be asserted in the cycle after this signal is
asserted.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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Chapter 2 Signal Description

f

CP2_endian_0 Out

Big Endian Byte Ordering. When asserted, the processor is using big endian
byte ordering for the dispatched instruction. When deasserted, the processor is
using little-endian byte ordering. Valid the cycle beforeCP2_as_0, CP2_fs_0
or CP2_ts_0 is asserted.

CP2_inst32_0 SOut

MIPS32 Compatibility Mode - Instructions. When asserted, the dispatched
instruction is restricted to the MIPS32 subset of instructions. Please refer to the
MIPS64™ architecture specification for a complete description of MIPS32
compatibility mode. Valid the cycle beforeCP2_as_0, CP2_fs_0or CP2_ts_0
is asserted.

Note: The 4KE core is a MIPS32 core, and will only issue MIPS32
instructions. ThusCP2_inst32_0 is tied high.

CP2_kd_mode_0 Out Kernel/Debug Mode.When asserted, the processor is in kernel or debug
mode. Valid the cycle beforeCP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.

To Coprocessor Data: These signals are used when data is sent from the 4KE core to the COP2 coprocessor, as part of
completing a To Coprocessor instruction.

CP2_tds_0 Out Coprocessor To Data Strobe.Asserted when To COP Op data is available on
CP2_tdata_0[31:0].

CP2_torder_0[2:0] SOut

Coprocessor To Order.Specifies which outstanding To COP Op the data is
for. Valid only whenCP2_tds_0 is asserted.

Note: The 4KE core can never send Data Out-of-Order, thus
CP2_torder_0[2:0] is forced to 0002.

CP2_tordlim_0[2:0] SIn

To Coprocessor Data Out-of-Order Limit. This signal forces the integer
processor core to limit how much it can reorder To COP Data. The value on
this signal corresponds to the maximum allowed value to be used on
CP2_torder_0[2:0].

Note: The 4KE core will never send Data Out-of-Order, thus
CP2_tordlim_0[2:0] is ignored.

CP2_tdata_0[31:0] Out To Coprocessor Data.Data to be transferred to the coprocessor. Valid when
CP2_tds_0 is asserted.

From Coprocessor Data: These signals are used when data is sent to the 4KE core from the COP2 coprocessor, as part o
completing a From Coprocessor instruction.

CP2_fds_0 In Coprocessor From Data Strobe.Asserted when From COP Op data is
available onCP2_fdata_0[31:0].

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

CP2_torder_0[2:0] Order

0002 Oldest outstanding To COP Op data transfer

0012 2nd oldest To COP Op data transfer.

0102 3rd oldest To COP Op data transfer.

0112 4th oldest To COP Op data transfer.

1002 5th oldest To COP Op data transfer.

1012 6th oldest To COP Op data transfer.

1102 7th oldest To COP Op data transfer.

1112 8th oldest To COP Op data transfer.
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2.2 Detailed Signal Descriptions
CP2_forder_0[2:0] In

Coprocessor From Order.Specifies which outstanding From COP Op the
data is for. Valid only whenCP2_fds_0 is asserted.

Note: Only values 0002 and 0012 are allowed; see theCP2_fordlim_0[2:0]
description below.

CP2_fordlim_0[2:0] SOut

From Coprocessor Data Out-of-Order Limit. This signal sets the limit on
how much the coprocessor can reorder From COP Data. The value on this
signal corresponds to the maximum allowed value to be used on
CP2_forder_0[2:0].

Note: The 4KE core can handle one Out-of-Order From Data transfer.
CP2_fordlim_0[2:0]is forced to 0012. The core can also never have more than
two outstanding From COP instructions issued, which also automatically
limits CP2_forder_0[2:0] to 0012.

CP2_fdata_0[31:0] In From Coprocessor Data.Data to be transferred from the coprocessor. Valid
whenCP2_fds_0 is asserted.

Coprocessor Condition Code Check: These signals are used to report the result of a condition code check to the 4KE core
from the COP2. This is only used for BC2 instructions.

CP2_cccs_0 In Coprocessor Condition Code Check Strobe.Asserted when coprocessor
condition code check bits are available onCP2_ccc_0.

CP2_ccc_0 In
Coprocessor Conditions Code Check.Valid whenCP2_cccs_0 is asserted.
When asserted, the branch instruction checking the condition code should take
the branch. When deasserted, the branch instruction should not branch.

Coprocessor Exceptions: These signals are used by the COP2 to report exception for each instruction.

CP2_excs_0 In Coprocessor Exception Strobe.Asserted when coprocessor exception
signalling is available onCP2_exc_0 andCP2_exccode_0.

CP2_exc_0 In Coprocessor Exception.When asserted, a Coprocessor exception is signaled
onCP2_exccode_0[4:0]. Valid whenCP2_excs_0 is asserted.

CP2_exccode_0[4:0] In

Coprocessor Exception Code.Valid when bothCP2_excs_0andCP2_exc_0
are asserted.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

CP2_forder_0[2:0] Order

0002 Oldest outstanding From COP Op data transfer

0012 2nd oldest From COP Op data transfer.

0102 3rd oldest From COP Op data transfer.

0112 4th oldest From COP Op data transfer.

1002 5th oldest From COP Op data transfer.

1012 6th oldest From COP Op data transfer.

1102 7th oldest From COP Op data transfer.

1112 8th oldest From COP Op data transfer.

CP2_exccode[4:0] Exception

010102 (RI) Reserved Instruction Exception

100002
(IS1) Available for Coprocessor

specific Exception

100012
(IS1) Available for Coprocessor

specific Exception

100102 C2E Exception

All others Reserved
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Chapter 2 Signal Description
Instruction Nullification: These signals are used by the 4KE core to signal nullification of each instruction to the COP2
coprocessor.

CP2_nulls_0 Out Coprocessor Null Strobe.Asserted when a nullification signal is available on
CP2_null_0.

CP2_null_0 Out

Nullify Coprocessor Instruction. When deasserted, the 4KE core is
signalling that the instruction is not nullified. When asserted, the 4KE core is
signalling that the instruction is nullified, and no further transactions will take
place for this instruction. Valid whenCP2_nulls_0 is asserted.

Instruction Killing: These signals are used by the 4KE core to signal killing of each instruction to the COP2 coprocessor.

CP2_kills_0 Out Coprocessor Kill Strobe.Asserted when kill signalling is available on
CP2_kill_0[1:0].

CP2_kill_0[1:0] Out

Kill Coprocessor Instruction. Valid whenCP2_kills_0 is asserted.

If an instruction is killed, no further transactions will take place on the
interface for this instruction.

Miscellaneous COP2 signals:

CP2_reset Out Coprocessor Reset.Asserted when a hard or soft reset is performed by the
integer unit.

CP2_present SIn COP2 Present.Must be asserted when COP2 hardware is connected to the
Coprocessor 2 Interface.

CP2_idle In
Coprocessor Idle.Asserted when the coprocessor logic is idle. Enables the
processor to go into sleep mode and shut down the clock. Valid only if
CP2_present is asserted.

Performance Monitoring Interface: These signals can be used to implement performance counters which can be used to
monitor hardware/software performance

PM_DCacheHit Out This signal is asserted whenever there is a data cache hit.

PM_DCacheMiss Out This signal is asserted whenever there is a data cache miss.

PM_DTLBHit Out
This signal is asserted whenever there is a hit in the data TLB. This signal is
valid only on the 4KEc™ core and should be ignored when using the 4KEp™
and 4KEm™ cores.

PM_DTLBMiss Out
This signal is asserted whenever there is a miss in the data TLB. This signal is
valid only on the 4KEc core and should be ignored when using the 4KEp and
4KEm cores.

PM_ICacheHit Out This signal is asserted whenever there is an instruction cache hit.

PM_ICacheMiss Out This signal is asserted whenever there is an instruction cache miss.

PM_InstComplete Out This signal is asserted each time an instruction completes in the pipeline.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description

CP2_kill_0[1:0] Type of Kill

002 Instruction is not killed and
results can be committed.012

102
Instruction is killed.

(not due toCP2_exc_0)

112
Instruction is killed.
(due toCP2_exc_0)
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2.2 Detailed Signal Descriptions

In
s

PM_ITLBHit Out
This signal is asserted whenever there is an instruction TLB hit. This signal is
valid only on the 4KEc core and should be ignored when using the 4KEp and
4KEm cores.

PM_ITLBMiss Out
This signal is asserted whenever there is an instruction TLB miss. This signal
is valid only on the 4KEc core and should be ignored when using the 4KEp and
4KEm cores.

PM_JTLBHit Out
This signal is asserted whenever there is a joint TLB hit. This signal is valid
only on the 4KEc core and should be ignored when using the 4KEp and 4KEm
cores.

PM_JTLBMiss Out
This signal is asserted whenever there is a joint TLB miss. This signal is valid
only on the 4KEc core and should be ignored when using the 4KEp and 4KEm
cores.

PM_WTBMerge Out This signal is asserted whenever there is a successful merge in the write
through buffer.

PM_WTBNoMerge Out This signal is asserted whenever a non-merging store is written to the write
through buffer.

ScratchPad RAM interface: This interface allows a ScratchPad RAM (SPRAM) array to be connected in parallel with the
cache arrays, enabling fast access to data. There are independent interfaces for Instruction and Data ScratchPads. Note: 
order to achieve single cycle access, the ScratchPad interface is not registered, unlike the other core interfaces. This require
more careful timing considerations. Refer to Chapter 6, “Scratchpad RAM Interface,” on page 59 for further details.

DSP_TagAddr[19:4] Out Virtual index into the SPRAM used for tag reads and writes.

DSP_TagRdStr Out Tag Read Strobe - Hit, Stall, TagRdValue use this strobe.

DSP_TagWrStr Out Tag Write Strobe - If SPRAM tag is software configurable, this signal will
indicate when to update the tag value.

DSP_TagCmpValue[23:0]

Out Tag Compare Value - This bus is used for both tag comparison and tag write
value.

For tag comparison, the bus usage is {PA[31:10], 2’b0} and contains the
address to determine hit/miss.

For tag writes, the bus contains {PA[31:10], Lock, Valid} from theTagLo
register.

DSP_DataAddr[19:2] Out Virtual index into the SPRAM used for data reads and writes.

DSP_DataWrValue[31:0] Out Data Write Value - Data value to be written to the data array.

DSP_DataRdStr Out Data Read Strobe - Indicates that the data array should be read.

DSP_DataWrStr Out Data Write Strobe - Indicates that the data array should be written.

DSP_DataWrMask[3:0] Out Data Write Mask - Byte enables for a data write.

DSP_DataRdValue[31:0] In Data Read Value - Data value read from the data array.

DSP_TagRdValue[23:0]
In Tag Read Value - Tag value read from the tag array. Written toTagLoregister

on a CACHE instruction. Read value maps into theseTagLo fields:
{PA[31:10], Lock, Valid}

DSP_Hit In Hit - Indicates that this read was to an address covered by the SPRAM.

DSP_Stall In Stall - Indicates that the read has not yet completed.

DSP_Present SIn Present - Indicates that a SPRAM array is connected to this port.

ISP_Addr[19:2] Out Virtual index into the SPRAM used for both reads and writes of tag and data.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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Chapter 2 Signal Description
ISP_RdStr Out Read Strobe - indicates a read of the tag and data arrays. Hit and Stall signals
are also based off of this strobe.

ISP_TagWrStr Out Tag Write Strobe - If SPRAM tag is software configurable, this signal will
indicate when to update the tag value.

ISP_DataTagValue[31:0]

Out Write/Compare Data

For data writes, this is the value to be written to the data array.

For tag writes the bus contains the {8’b0, PA[31:10], Lock, Valid} from the
TagLo register.

For tag comparison, the bus has the address to be used for hit/miss
determination in the format {8’b0, PA[31:10], Uncacheable, 1’b0}. When
high, the Uncacheable bit indicates that the physical address bits (PA[31:10])
are to an uncacheable address; when the Uncacheable bit is low, the physical
address is to a cacheable address.

ISP_DataWrStr Out Data Write Strobe - Indicates that the data array should be written.

ISP_DataRdValue[31:0] In Data Read Value - Data value read from the data array.

ISP_TagRdValue[23:0]
In Tag Read Value - Tag value read from the tag array. Written toTagLoregister

on a CACHE instruction. Read value maps into theseTagLo fields:
{PA[31:10], Lock, Valid}

ISP_Hit In Hit - Indicates that this read was to an address covered by the SPRAM.

ISP_Stall In Stall - Indicates that the read has not yet completed.

ISP_Present SIn Present - Indicates that a SPRAM array is connected to this port.

Scan Test Interface: These signals provide the interface for testing the core. The use and configuration of these pins are
implementation-dependent.

gscanenable In
This signal should be asserted while scanning vectors into or out of the core.
Thegscanenable signal must be deasserted during normal operation and
during capture clocks in test mode.

gscanmode In
This signal should be asserted during all scan testing both while scanning and
during capture clocks. Thegscanmode signal must be deasserted during
normal operation.

gscanramwr In

This signal will optionally provide direct control over the read and write
strobes of the RAM arrays in the core. This control will only occur if
gscanmodeis also asserted, and if this feature was selected when the core was
built. gscanramwr is recommended to be held low during normal (non-scan)
operation.

gscanin_x In This signal is input to a scan chain. (x may be an integer greater than or equal
to 0)

gscanout_x Out This signal is output from a scan chain. (x may be an integer greater than or
equal to 0)

BistIn[n:0] In Input to the user-specified BIST controller

BistOut[n:0] Out Output from the user-specified BIST controller

Integrated Memory BIST Interface : These signals provide an interface to integrated memory BIST features present within
the core for testing the internal cache SRAM arrays. Refer to Chapter 10, “Design For Test Features,” on page 101 for more
details about the use of this interface.

gmbinvoke In Enable signal for integrated BIST controllers.

gmbdone Out Common completion indicator for all integrated BIST sequences.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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2.2 Detailed Signal Descriptions
gmbddfail Out When high, indicates that the integrated BIST test failed on the data cache data
array.

gmbtdfail Out When high, indicates that the integrated BIST test failed on the data cache tag
array.

gmbwdfail Out When high, indicates that the integrated BIST test failed on the data cache way
select array.

gmbdifail Out When high, indicates that the integrated BIST test failed on the instruction
cache data array.

gmbtifail Out When high, indicates that the integrated BIST test failed on the instruction
cache tag array.

gmbwifail Out When high, indicates that the integrated BIST test failed on the instruction
cache way select array.

Table 2-3 Signal Descriptions (Continued)

Signal Name Type Description
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Chapter 3

EC Interface

This chapter describes the EC interface, which is present on all MIPS32 4KE processor cores. The EC interfac
generally described in the companion document, titledEC Interface Specification[2]. The rest of this chapter discusses
the specific 4KE implementation of the EC interface.

This chapter contains the following major sections:

• Section 3.1, "Interface Transactions"

• Section 3.2, "Outstanding Transactions"

• Section 3.3, "Sequential Transactions"

• Section 3.4, "Write Buffer"

• Section 3.6, "SimpleBE Mode"

• Section 3.7, "External Write Buffers"

3.1 Interface Transactions

The cores implement 32-bit unidirectional data buses:EB_RData[31:0]for read operations andEB_WData[31:0] for
write operations. The following sections describe the bus transactions:

• Section 3.1.1, "Fastest Read Transaction"

• Section 3.1.2, "Single Read with Wait States"

• Section 3.1.3, "Fastest Write Transaction"

• Section 3.1.4, "Single Write with Wait States"

• Section 3.1.5, "Burst Read"

• Section 3.1.6, "Burst Write"

• Section 3.1.7, "Back-to-Back Reads"

• Section 3.1.8, "Back-to-Back Writes"

• Section 3.1.9, "Read Followed by Write with Reordering"

• Section 3.1.10, "Write Followed by Read with Reordering"

3.1.1 Fastest Read Transaction

The core allows data to be returned in the same clock that the address is driven onto the bus. This is the faste
read cycle as shown in Figure 3-1 on page 20.
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Figure 3-1 Fastest Read Cycle

In this transaction, the core drives address and control onto the bus and samplesEB_RdValactive on the next rising edge
of the clock.

3.1.2 Single Read with Wait States

Figure 3-2 on page 21 shows a single read transaction with one address wait state and one data wait state. The co
address ontoEB_A[35:2] and byte enable information ontoEB_BE[3:0]. To maximize performance, the bus interfac
does not define a maximum number of outstanding bus cycles. Instead the interface provides theEB_ARdyinput signal;
this signal is driven by external logic and controls the generation of addresses on the bus. Current versions of 
cores can only have a maximum of 8 reads and 8 writes outstanding, but future versions may have a larger nu
outstanding transactions.

The core drives an address whenever it becomes available, regardless of the state ofEB_ARdy. However, the core always
continues to drive the address until the clock afterEB_ARdyis sampled asserted. For example, on the rising edge of clo
2 in Figure 3-2 on page 21, theEB_ARdysignal is sampled low, indicating that external logic is not ready to accept
new address; however, the core still drivesEB_A[35:2] in this clock as shown. On the rising edge of clock 3 the cor
samplesEB_ARdy asserted and continues to drive the address until the rising edge of clock 4.

TheEB_Instrsignal is asserted during a single read cycle if the read is for an instruction fetch. TheEB_AValidsignal is
driven in each clock thatEB_A[35:2] is valid on the bus. The core drives theEB_Write signal low to indicate a read
transaction.

TheEB_RData[31:0]andEB_RdValsignals are first sampled on the rising edge of clock 4, one clock afterEB_ARdyis
sampled asserted. Data is sampled on every clock thereafter untilEB_RdVal is sampled asserted.

If a bus error occurs during the data transaction, then external logic asserts theEB_RBErr signal in the same clock as
EB_RdVal.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr,
EB_BE[3:0]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

Driven by system logic

1 2 3 4 5 6 7 8

Valid

Valid

Valid
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Figure 3-2 Single Read Transaction with Wait States

3.1.3 Fastest Write Transaction

The core allows theEB_WDRdy signal to be driven active in the same clock that address and data are driven ont
bus. This is the fastest type of write cycle as shown in Figure 3-3 on page 22.

Address and Control held until clock after EB_ARdy
sampled asserted

Driven by system logic

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr,
EB_BE[3:0]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

1 2 3 4 5 6 7 8

Valid

Valid

Valid

Addr
Wait
MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00 21

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.



Chapter 3 EC Interface

e drives
e

ock
ernal
Figure 3-3 Fastest Write Transaction

In this transaction, the core drives address and control onto the bus and samplesEB_WDRdy active on the same rising
edge of the clock.

3.1.4 Single Write with Wait States

Figure 3-4 on page 23 shows a write transaction with one address wait state and two data wait states. The cor
address and control information onto theEB_A[35:2] andEB_BE[3:0] signals on the rising edge of clock 2. As in th
single read cycle with wait states, these signals remain active until the clock edge after theEB_ARdysignal is sampled
asserted. The core asserts theEB_Writesignal to indicate that a valid write cycle is on the bus, and assertsEB_AValidto
indicate that a valid address is on the bus.

The core drives write data ontoEB_WData[31:0]in the same clock as address and continues to drive data until the cl
edge after theEB_WDRdy signal is sampled asserted. If a bus error occurs during a write operation, then the ext
logic asserts theEB_WBErr signal one clock after assertingEB_WDRdy.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Write

EB_BE[3:0]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Valid

Valid

Valid

Driven by system logic

Data is Driven until clock after EB_WDRdy
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Figure 3-4 Single Write Transaction with Wait States

3.1.5 Burst Read

The core is capable of generating burst transactions on the bus. A burst transaction is used to transfer multiple
data items. Redundant signals are provided so that system logic can treat a burst transaction either as one trans
as multiple independent transactions.

Burst read transactions initiated by the core always contain four data transfers. In addition, the data requested is
a 16- byte-aligned block. Burst reads are always initiated for cacheable instruction or data reads which have m
the primary instruction or data cache.

The order of words within this 16-byte block varies depending on which of the words in the block is being request
the execution unit and the ordering protocol selected. The burst always starts with the word requested by the ex
unit and proceeds in either an ascending or descending order wrapping at the end of an aligned block.Table 3-1 and
Table 3-2 show the sequence of address bits 2 and 3.

Table 3-1 Sequential Burst Order

Starting Address EB_A[3:2] Address Progression of EB_A[3:2]

00 00, 01, 10, 11

01 01, 10, 11, 00

10 10, 11, 00, 01

11 11, 00, 01, 10

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Write

EB_BE[3:0]

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Valid

Driven by system logic

Data is Driven until clock after EB_WDRdy

Valid

Valid

Addr
Wait

Address and Control held until clock after EB_ARdy
sampled asserted
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Figure 3-5 on page 25 shows an example of a burst read transaction. Thecore drives address and control information ont
theEB_A[35:2] andEB_BE[3:0] signals on the rising edge of clock 2. As in the single read cycle, these signals remain
active until the clock edge after theEB_ARdysignal is sampled asserted. The core continues to driveEB_AValidas long
as a valid address is on the bus.

The EB_Instr signal is asserted if the cycle is an instruction fetch. TheEB_Burstsignal is asserted throughout the cycle
to indicate that a burst transaction is in progress. The core asserts theEB_BFirst signal in the same clock as the first
address is driven to indicate the start of a burst cycle. In the clock that the last address is driven, the core assertsEB_BLast
to indicate the end of the burst transaction.

The core first samples theEB_RData[31:0] bus one clock afterEB_ARdy is sampled asserted. External logic asserts
EB_RdVal to indicate that valid data is on the bus. The core registers data internally wheneverEB_RdVal is sampled
asserted.

Note that on the rising edge of clock 6 in Figure 3-5 on page 25 theEB_RdVal signal is sampled deasserted, causing
wait state betweenData 2andData 3. External logic asserts theEB_RBErrsignal in the same clock as data if a bus erro
occurs during that data transfer.

Table 3-2 SubBlock Burst Order

Starting Address EB_A[3:2] Address Progression of EB_A[3:2]

00 00, 01, 10, 11

01 01, 00, 11, 10

10 10, 11, 00, 01

11 11, 10, 01, 00
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Figure 3-5 Burst Read Transaction Timing Diagram

3.1.6 Burst Write

Burst write transactions are used to empty one of the write buffers. A burst transaction is only performed if the 
buffer contains 16 bytes of data associated with the same aligned memory block; otherwise individual write transa
are performed. Figure 3-6 on page 26 shows a timing diagram of a burst write transaction. Unlike the read burst,
burst always begins with EB_A[3:2] equal to 00b.

The core drives address and control information onto theEB_A[35:2]andEB_BE[3:0]signals on the rising edge of clock 2.
As in the single read cycle, these signals remain active until the clock edge after theEB_ARdysignal is sampled asserted.
The core continues to driveEB_AValid as long as a valid address is on the bus.

The core asserts theEB_Write, EB_Burst, andEB_AValid signals during the time the address is driven.EB_Write
indicates that a write operation is in progress. The assertion ofEB_Burst indicates that the current operation is a burs
EB_AValid indicates that a valid address is on the bus.

The core asserts theEB_BFirst signal in the same clock that address 1 is driven to indicate the start of a burst cyc
the clock that the last address is driven, the core assertsEB_BLast to indicate the end of the burst transaction.

In Figure 3-6 on page 26 the first data word (Data1) is driven in clocks 2 and 3 due to theEB_WDRdy signal being
sampled deasserted on the rising edge of clock 2, causing one wait state cycle. WhenEB_WDRdy is sampled asserted
on the rising edge of clock 3, the core responds by driving the second word (Data2) on the rising edge of clock 4.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr

EB_BE[3:0]

EB_Burst

EB_BFirst

EB_BLast

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

1 2 3 4 5 6 7 8

Adr1 Adr2 Adr3 Adr4

Valid

Data1

Driven by system logic

Data2 Data3 Data4
Read
Wait
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External logic drives the EB_WBErr signal one clock after the corresponding assertion of EB_WDRdy if a bus err
occurred as shown by the arrows in Figure 3-6 on page 26.

Figure 3-6 Burst Write Transaction Timing Diagram

3.1.7 Back-to-Back Reads

Figure 3-7 on page 27 shows the basic timing relationships of signals during a back-to-back read transaction. D
back-to-back read cycle, the core drives addresses for both read cycles ontoEB_A[35:2] and byte enable information
ontoEB_BE[3:0]. Note that unlike the 4K cores, the 4KE cores do not necessarily leave a dead clock between a
transactions.

To maximize performance, the core does not define a maximum number of outstanding bus cycles. Instead the
provides theEB_ARdy input signal. This signal is driven by external logic and controls the generation of address
the bus.

An address is driven by the core whenever it becomes available, regardless of the state ofEB_ARdy; however, the core
always continues to drive the address until the clock afterEB_ARdyis sampled asserted. For example, on the rising ed
of clock 2 in Figure 3-7 on page 27 theEB_ARdy signal is sampled low, indicating that external logic is not ready to
accept the new address. However, the core still drivesEB_A[35:2] in this clock as shown. on the rising edge of clock 3
the core samplesEB_ARdy asserted and continues to drive the address until the rising edge of clock 4.

TheEB_Instrsignal is asserted during a read cycle if the read is for an instruction fetch. TheEB_AValidsignal is driven
in each clock thatEB_A[35:2] is valid on the bus. The core drives theEB_Writesignal low to indicate a read transaction

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_BE[3:0]

EB_Write

EB_Burst

EB_BFirst

EB_BLast

EB_AValid

EBWData[31:0}]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Adr1 Adr2 Adr3 Adr4

Data1

Driven by system logic

Data2 Data3 Data4

Write
Wait

Write
Wait
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TheEB_RData[31:0]andEB_RdValsignals are first sampled on the rising edge of clock 4, one clock afterEB_ARdyis
sampled asserted. Data is sampled on every clock thereafter untilEB_RdVal is sampled asserted.

For the two back-to-back reads shown inFigure 3-7, both reads have one address wait state. The first read has one
wait state since theEB_RdVal for that read is sampled in clock 5, two cycles after the sampled assertion ofEB_ARdy.
The second read data is returned as fast as possible, with no data wait states since itsEB_RdVal is sampled in clock 6,
one clock after the sampling of itsEB_ARdy.

If a bus error occurs during the data transaction, external logic asserts theEB_RBErr signal in the same clock as
EB_RdVal.

Figure 3-7 Back-to-Back Read Transaction Timing Diagram

3.1.8 Back-to-Back Writes

Figure 3-8 on page 28 shows a timing diagram of a back-to-back write operation. In any bus transaction, the core
address, control, and data information as they becomes available, regardless of the state ofEB_ARdy. If theEB_ARdy
signal is asserted at the time that the address is driven by the processor, indicating that the external agent can
another address, then the processor can drive a new address on the following clock.

In Figure 3-8 on page 28, address, control, and data (Write1/Data1) become available and are driven onto the bus by th
core during clock 2.EB_ARdy is sampled deasserted on the rising edge of clock 2, indicating that the external ag
not ready to accept a new address. This causes one address wait state for theWrite1address. The processor continues t
drive the bus with theWrite1 address and control until the clock afterEB_ARdy is sampled asserted. In this case,
EB_ARdyis sampled asserted on the rising edge of clock 3, allowing the processor to drive new address and con
the rising edge of clock 4.

TheEB_WDRdysignal is driven by the external agent to indicate that it has accepted the data on the bus. In this ex
theEB_WDRdysignal is sampled deasserted by the core on the rising edge of clock 3, causing the core to hold th
(Data1) during the following cycle, clock 4. The external agent assertsEB_WDRdyduring clock 3, which is sampled by
the core on the rising edge of clock 4, indicating that is has accepted the data on the bus. The core continues to d
until one clock afterEB_WDRdyis sampled asserted, so the core drivesData1until the rising edge of clock 5. Note that

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2]

EB_Instr,
EB_BE[3:0]

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_Write

1 2 3 4 5 6 7 8

Address 1

Driven by system logic

Addr2

Valid

Address and Control held until clock after EB_ARdy
sampled asserted

Valid

Data 1 Data 2

Addr
Wait
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EB_WDRdywill never be sampled earlier than the rising edge in which the associatedEB_ARdyis sampled asserted. If
EB_WDRdywas asserted on the rising edge of clock 2 (one cycle before theEB_ARdy), then it would have been ignored

The core can drive new data (Data2) on the rising edge of clock 5. On the rising edge of clock 5, the core detects
EB_WDRdy deasserted, causing the processor to holdData2 in the following cycle. On the rising edge of clock 6
EB_WDRdy is sampled asserted, therefore, the core can stop drivingData2 on the rising edge of clock 7.

Figure 3-8 Back-to-Back Write Transactions

3.1.9 Read Followed by Write with Reordering

Figure 3-9 on page 29 shows a timing diagram of a read followed by a write operation with the operations bein
completed out of order. Since data is transferred for read and write operations on independent unidirectional bus
their corresponding ready indicators), the bus interface allows read and write operations to complete out of ord
respect to how the read and write addresses were initiated.

The core drives address, control, and data information onto the bus as it becomes available, regardless of the 
EB_ARdy. If theEB_ARdysignal is asserted at the time that address is driven by the processor, indicating that the ex
agent can accept the address, the processor can drive a new address on the following clock.

Address and control for the read operation become available and are driven onto the bus by the core on the ris
of clock 2. The external agent hasEB_ARdy asserted so there are no address wait states for the read. The proces
continues to drive the bus until one clock afterEB_ARdyis sampled asserted. The write address and control informat
are driven on the rising edge of clock 4(1 clock after it could have been sent). The external agent assertsEB_ARdy for
an additional clock, which is sampled by the core on the rising edge of clock 4, so the core could have driven a
address (not shown) on the rising edge of clock 5.

The external agent asserts theEB_WDRdysignal on the rising edge of clock 4, indicating its ability to accept the wri
data, even though the read operation has not completed. The core drives write data for one clock afterEB_WDRdy has
been sampled asserted. This causes the processor to drive data until the rising edge of clock 5.

Read data is driven onto the bus during clock 5, one clock after the write operation has completed. The core sam
EB_RdVal signal asserted on the rising edge of clock 6, causing the processor to latch the data and terminate t

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2],
EB_BE[3:0]

EB_Write

EB_AValid

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Write1 Write2

Data1 Data2

Valid1 Valid2

Write
Wait
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Figure 3-9 Read Followed by Write Transaction with Reordering

3.1.10 Write Followed by Read with Reordering

Figure 3-10 on page 30 shows a timing diagram of a write followed by a read operation with the operations bei
completed out of order.

The core drives address, control, and data information as it becomes available, regardless of the state ofEB_ARdy. If the
EB_ARdy signal is asserted at the time that address is driven by the processor, indicating that the external agen
accept the address, the processor can drive a new address on the following clock.

Address, control, and data for the write operation become available and are driven by the core on the rising edge
2. The processor continues to drive the address and control buses untilEB_ARdy is sampled asserted. SinceEB_ARdy
was not sampled asserted on the rising edge of clock 2, an address wait state results. The assertion ofEB_ARdy is
sampled on the rising edge of clock 3, causing the processor to drive the write address and control until the risin
of clock 4. The read address and control are then initiated on the bus on the rising edge of clock 5 (the read cou
started in clock 4). Note that a new address (not shown) could have been driven on the bus on the rising edge of

The external agent drives read data and asserts theEB_RdVal signal in clock 5, indicating that valid read data is on th
bus, even though the write operation has not completed. The core registers the read data on the rising edge of
thereby completing the read operation.

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2],
EB_BE[3:0]

EB_Write

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Read Write

RData

RValid

WData

Valid1
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By default, the core drives write data at the same time as the write address and continues to drive data for one clo
EB_WDRdy is sampled asserted. This causes the processor to drive data in clocks 2 - 7. In this example, the ex
agent assertsEB_WDRdyin clock 6 and is sampled active by the core on the rising edge of clock 7, one clock afte
read operation has completed. The core continues to drive data until the rising edge of clock 8 and the write oper
completed. Note that it is the responsibility of the external agent to ensure the correct data is returned when re-o
data transactions.

.

Figure 3-10 Write Followed by Read Transaction with Reordering

3.2 Outstanding Transactions

The EC interface itself does not limit the number of transactions that can be active at any time. Instead, the nu
external transactions can be throttled via control of theEB_ARdyinput. This input indicates that the external controlle
can accept a new transaction.

The bus interface implementation of the 4KE core contains enough buffering to allow a maximum of 16 transacti
be active simultaneously, as follows:

• Four bursted instruction reads

• Four bursted data reads

• Eight writes to a single 16B line

Clock #

SI_ClkOut

EB_ARdy

EB_A[35:2],
EB_BE[3:0]

EB_Write

EB_AValid

EB_RData[31:0]

EB_RdVal

EB_RBErr

EB_WData[31:0]

EB_WDRdy

EB_WBErr

1 2 3 4 5 6 7 8

Write Read

RData

RValid

Write Data

WValid
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When designing a generic EC interface controller, keep in mind that other MIPS processor cores designed to t
interface may allow a different number of transactions to be active.

3.3 Sequential Transactions

Back-to-back read accesses of the same type (Instruction or Data) will have an additional timing constraint. On
request of a given type is allowed to be outstanding; therefore the second address will not come out onto the bus
least 1 cycle after the last read data for the first address was returned. This behavior is not part of the EC inter
specification and should not be relied on in a generic EC interface controller.

Unlike the 4K processor cores, the 4KE cores will not add a dead clock between address transactions. For exam
instruction read address can come onto the bus immediately after a data read address.

3.4 Write Buffer

The write buffer is organized as two 16 byte buffers. Each buffer contains data from a single 16 byte aligned bl
memory. One buffer contains the data currently being transferred on the external interface, while the other buff
contains accumulating data from the core.

Data from the accumulation buffer is transferred to the external interface buffer under one of these conditions:

• When a store is attempted from the core to a different 16-byte block than is currently being accumulated.

• SYNC instruction. TheCACHE  instruction also performs an implicitSYNC.

• Store to a valid word in the buffer if merging is disabled.

• Any store to uncached memory.

• A load to the line being merged.

• A complete 16B line has been gathered for a burst write and the bus is idle.

Note that if a transfer is forced and the data in the external interface buffer has not been written out to memory, th
is stalled until the memory write completes. After completion of the memory write, accumulated buffer data can
written to the external interface buffer.

3.5 Merging Control

All 4KE cores implement two 16 byte collapsing write buffers that allow byte, halfword, tri-byte, or word writes f
the core to be accumulated in the buffer into a 16 byte value before bursting the data out onto the bus in word 
This buffer also gathers dirty cache lines during an eviction. Note that writes to uncached areas are never merg

Merging can be disabled. If merging is disabled, the buffer will still attempt to gather an entire 16B line to gene
bursted write. If a store is attempted to a word that is already valid in the write buffer, the buffer will be flushed an
two stores will not merge.

The merging option is selected by theSI_MergeMode[1:0] input. The encoding is shown inTable 2-3.
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3.6 SimpleBE Mode

The merging write buffer and even individual load and store instructions can generate bus transactions with byte
patterns that are not directly supportable on other bus standards. To facilitate connection to these types of buses,
has a mode where it will only generate bus transactions that are naturally aligned bytes, halfwords, or words. T
referred to as SimpleBE mode, selected whenSI_SimpleBE[1:0]is set to 012. The default mode for the EC interface, in
which the full range of byte enable combinations may occur, is selected whenSI_SimpleBE[1:0]is set to 002. Note that
theSI_SimpleBE bus is a static input which must be set to DC values at power-up of the core. The other two pos
values ofSI_SimpleBE are currently reserved and should not be selected.

Allowable byte enables in SimpleBE mode are shown inTable 3-3.

The only load instruction that attempts to generate a complex byte enable combination is an uncached LWL/LW
instruction requesting a tri-byte from memory. In SimpleBE mode, this transaction will be turned into a word reque
the bus. When the full word is returned, the core will only use the appropriate 3 bytes. In normal mode, load oper
to uncached space are always for the exact bytes requested. In SimpleBE mode, however, uncached tri-byte lo
turned into a full word request, the memory system must be capable of tolerating an uncached request to the fou
which won’t actually be used by the core.

Merging stores or SWL/SWR instructions can also attempt to generate complex byte enable combinations. When
transaction with complex byte enables is detected internally, the core will split the write into two transactions on th
Each transaction meets one of the byte enable combinations shown inTable 3-3: one with the upper two byte enables
deasserted and one with the lower two deasserted.

The setting ofSI_SimpleBEis independent of the value forSI_MergeMode. For example, the full merging option could
be chosen forSI_MergeMode, while SimpleBE mode is selected forSI_SimpleBE.

3.7 External Write Buffers

Some systems may have external write buffers to increase bus efficiency and system performance. The core h
two-signal interface which can allow software to have some control over the external write buffers. TheSYNC
instruction is intended to form a barrier between load/store instructions before and after it in the instruction stream
execution of aSYNC instruction, the core will complete all pending read requests and flush the internal write buffer.
core will also assertEB_WWBEto signal to the system that it is waiting for the Write Buffer Empty signal (EB_EWBE
TheSYNC instruction will not complete until theEB_EWBE input is asserted.

In most systems, theEB_EWBE signalis tied high. Just using theEB_WWBE signals does not ensure coherency. If a
write is in the external write buffer, then the core can generate a read request to the given address without ass

Table 3-3 Allowable Byte Enables in SimpleBE Mode

EB_BE[3:0] (binary)

0001

0010

0100

1000

0011

1100

1111
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EB_WWBE(because the core has no knowledge of the external write buffers). Therefore, any write buffers in the s
must maintain coherency with reads.

TheEB_WWBE/EB_EWBE interface can be used to makeSYNCs “harder” by forcing the flush of the external write
buffers. This is a system/SW design issue - a decision must be made in determining what the system does whenSYNC
instruction is executed (and the same will be done for other synchronizing instructions such asCACHE ).

In order to minimize the delay when the write buffers are already empty (or theEB_EWBE signal is not used and just
tied high),EB_EWBE can be sampled beforeEB_WWBE is seen externally. This will only happen if the internal writ
buffers are empty and no writes are on the EC interface. If there are writes already on the bus or new writes ca
theSYNC, EB_EWBE will not be sampled until the cycle that the final write is accepted.
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Chapter 4

EJTAG Interface

This chapter discusses chip-level integration details for the EJTAG-related signals on a MIPS32™ 4KE™ core, a
as some system level requirements. A comparison of EJTAG versus JTAG is covered first, to clarify the differenc
similarities. Then EJTAG chip and system issues related to one or multiple 4KE cores within a single chip are disc

This chapter contains the following sections:

• Section 4.1, "EJTAG versus JTAG"

• Section 4.2, "How to Connect EJ_* Pins"

• Section 4.3, "Multi-Core Implementations"

• Section 4.4, "EJTAG Trace"

An EJTAG TAP controller is an optional feature in a 4KE core. If the 4KE core under use does not contain the E
TAP controller, then much of this chapter is irrelevant.

Reference to the generalEJTAG Specification[3] can be found several times in this chapter. MIPS recommends that y
become familiar with the general EJTAG Specification in addition to this chapter, before deciding how to integra
EJTAG into your chip.

4.1 EJTAG versus JTAG

The name EJTAG is often confused with IEEE JTAG boundary scan, but EJTAG is not related to boundary scan. E
is a set of hardware-based debugging features on a MIPS processor, accessible by debug software. EJTAG is
software programmers to control and debug code execution, as well as to access hardware resources within a
processor during code development. The interface for EJTAG access to the core uses a superset of the JTAG 
interface, but that is really its only similarity with boundary scan.

Read the “EJTAG Debug Support” chapter in theMIPS32™ 4KE™ Processor Core Family Software User’s Manua
[1]to learn more about the software debugging capabilities of EJTAG.

4.1.1 EJTAG Similarities to JTAG

From a functional viewpoint, the following features are inherited from the JTAG TAP interface:

• Protocol for selecting data and control registers usingEJ_TMS.

• Serial protocol for transmitting data in and out of the selected register usingEJ_TDI andEJ_TDO.

• Asynchronous reset to the EJTAG TAP controller usingEJ_TRST_N (TRST*).

• EJ_TCK driving the clock input of all the EJTAG TAP controller registers.

Because of these similarities, it is possible to share certain physical resources between the TAP controllers in 
and JTAG. MIPS recommends NOT sharing any logic or pins between JTAG and EJTAG. MIPS recognizes that re
pin count is often necessary in large System-on-a-Chip (SOC) chip designs.
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4.1.2 Sharing EJTAG Resources with JTAG

It is theoretically possible to share the TAP controller for JTAG and EJTAG purposes because the EJTAG contr
commands do not use reserved JTAG commands. This TAP sharing is not supported by the 4KE core, however. T
core has its own independent TAP controller that is reserved exclusively for EJTAG operation.

Because the EJTAG electrical specification is identical to the JTAG specification, it is possible to share the physic
pins between the two TAP controllers between EJTAG and JTAG. There are two ways this might be accomplishe
both of them have issues which must be considered.

4.1.2.1 Daisy-Chained TDI-TDO

One method is to hook up the physical pinsTCK, TMS andTRST* in parallel to both TAP controllers, and then
daisy-chain theTDI/TDO pins in the following manner:

• physical pinTDI to JTAGTDI

• JTAGTDO to EJTAGEJ_TDI

• EJTAGEJ_TDO to physical pinTDO.

• EJTAGEJ_TDOzstate to output enable of physicalTDO.

Figure 4-1 on page 36 shows the serialTDI-TDO chain setup with parallel control of the TAP controllers.

Figure 4-1 Daisy-ChainedTDI-TDO Between JTAG and EJTAG TAP Controllers

Some EJTAG debug tool chains can handle this configuration. If another TAP controller in the path to the EJTAG
controller can be identified, then the debug software must be told the following items:

• the Instruction word length of the JTAG TAP controller

• the Instruction word command to select the bypass register (usually all 1’s)

• the length of the bypass register (usually one bit)

This will enable the debugger to always select the bypass register within the JTAG TAP controller during EJTAG a
and compensate for the bypass register length.

TCK
TMS

TRST*

TDI
TDO
TDO_OEN

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

TCK
TMS

TRST*

TDI

TDO

CHIP JTAG TAP

EJTAG TAP

4KE core

SOC_CHIP
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The main problem is the presence of the serial EJTAG TAP controller in the JTAG TAP path; automatic JTAG
testbenches do not like the visibility of another TAP controller inside the chip. MIPS strongly recommends NOT
the setup in Figure 4-1 on page 36 for sharing TAP controller external pins between an EJTAG TAP and a JTAG

4.1.2.2 Multiplexed Pin Access

A select signal can choose which TAP controller has access to the physical pins. How the user wishes to gate 
inputs of the unselected TAP controller depends on the presence of an asynchronous reset input. In Figure 4-2
37, a setup which anticipates the existence ofTRST* on the “CHIP JTAG TAP” controller is shown.

Figure 4-2 Multiplexing Between JTAG and EJTAG TAP Controllers

TAPSelect in Figure 4-2 on page 37 is shown as an SOC_CHIP external input, and NOT as internal logic or reg
signal. This is for two important reasons:

1. When doing board level interconnect testing. The JTAG controller should be able to work the boundary sca
without any other controlled pins beyond the five JTAG pins.

2. When the board holding the SOC_CHIP is used for software development, EJTAG must be functional on th
controller while the 4KE core (and thus probably the entire SOC_CHIP) is held in reset. During reset, EJTA
commands can initialize the 4KE core to leave the reset state in Debug Mode, and thus the debug interfac
control the 4KE core before it attempts to fetch the first instruction.

The two reasons above also imply thatTAPSelectmust be valid and fixed while using either of the two TAP controller
For system integrity,TAPSelectshould also be kept valid while there is no probe connected to the TAP Probe Conne
One small implication to this is, that theTAPSelectinput can not be tested by JTAG boundary scan. It might be wise
NOT have boundary scan include theTAPSelect input logic. This is, however, the only problem in this shared TAP
controller configuration. A two-way jumper on the PCB could be created to select the fixed state ofTAPSelect.

If pin sharing between EJTAG and JTAG TAP controllers is absolutely unavoidable, MIPS recommends the
implementation shown in Figure 4-2 on page 37.

4.2 How to ConnectEJ_* Pins

In the previous section, issues concerning the sharing of EJTAG TAP and JTAG TAP pins were discussed. This
assumes that the chip has a separate set of EJTAG TAP pins. Other non-TAP EJTAG pins on the 4KE core will r
separate pins on the chip. This section will discuss how to connect all theEJ_* pins in the chip.

TCK
TMS

TRST*

TDI
TDO
TDO_OEN

TCK
TMS

TRST*

TDI

TDO

CHIP JTAG TAP

4KE core

SOC_CHIP
TAPSelect

EJ_TCK
EJ_TMS

EJ_TRST_N

EJ_TDI
EJ_TDO
EJ_TDOzstate

1
0

1
0
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4.2.1 EJTAG Chip-Level Pins

The EJTAG TAP signals on the 4KE core are:EJ_TCK, EJ_TMS, EJ_TDI, EJ_TRST_N, EJ_TDO andEJ_TDOzstate.
An extra signalEJ_DINT (Debug Interrupt) can also be connected to an external pin. Figure 4-3 on page 38 sho
intended connection to the chip. Pin names for the chip have been chosen as the usual JTAG TAP signals, witE”
prefix.

Figure 4-3 EJTAG Chip-Level Pin Connection

AC timing characteristics for theETDO driver and the input buffers can be found in Section 7.2, “AC Timing
Characteristics”, of the EJTAG Specification. In particular notice that all the probe pins must have pull-up or pull-
logic attached. As shown in Figure 4-3 on page 38, all the chip-level pins have corresponding pins on the EJTAG
Connector.RST* is special, because an assertion (active low) on this pin must result in a system level reset. Re
Figure 4-4 on page 40 for further details on EJTAG-related reset circuitry.

4.2.1.1 OptionalETRST* Pin

Although theETRST*is an optional input pin on the chip, it is strongly recommended that theETRST*pin be present.
If this pin is not used, on-chip logic is needed that assertsEJ_TRST_Nat power-up. This assertion can ONLY happen o
power-up or at cold-start. Any soft reset of the chip and 4KE core must not affect theEJ_TRST_Nsignal. Special timing
also applies to the deassertion ofEJ_TRST_N. Refer to Section 6.3 of the EJTAG Specification, “OptionalTRST*Pin”
for more details.

4.2.1.2 OptionalEDINT  Pin

TheEDINT input pin is also optional. An assertion ofEJ_DINTin the 4KE core triggers a Debug Interrupt Exception
This will stop the normal program flow within the 4KE core and force it to the Debug Exception Vector. The same e
can be achieved by setting the EjtagBrk bit in the EJTAG Control Register. The EJTAG Control Register is acce
through the TAP controller pins, which takes multipleETCK clock periods.

The difference is that asserting theEJ_DINT input has much lower latency, and gives faster control over forcing the
processor into Debug Mode. If fast entry into Debug Mode is not needed, thenEDINTpin can be removed from the chip

EJ_DINT on the 4KE core may also be connected to on-chip logic, such as a Multi-Core Breakpoint Unit (see F
4-5 on page 41 for more details). TheEJ_DINTsup (EJTAG Debug Interrupt Pin Supported) input on a 4KE core is
asserted only if theEJ_DINTinput connected to theDINT pin of the Probe Connector. TheEJ_DINTinput may not be
disabled if the theEJ_DINTsup input is deasserted.EJ_DINTsup is only used to set the DINTsup bit in the EJTAG
Implementation Register.

EJ_TCK
EJ_TMS

EJ_DINT

EJ_TDI
EJ_TDO
EJ_TDOzstate

ETCK
ETMS

EDINT

ETDI
ETDO

4KE core

SOC_CHIP

EJ_TRST_NETRST*

Optional

Optional

EJ_DINTsupVDD

EJ_DebutM

RESET Chip Reset

Probe Connector

TCK
TMS

DINT

TDI
TDO

TRST*

RST*
System

Reset logic

Optional

Optional
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If EJ_DINT on the 4KE core to an interrupt source is not connected, then bothEJ_DINT andEJ_DINTsup must be
deasserted by connecting them to logic zero.

4.2.2 EJTAG Device ID Input Pins

The Device ID Register in the EJTAG TAP controller gets its values directly fromEJ_ManufID[10:0],
EJ_PartNumber[15:0] andEJ_Version[3:0]. If these pins are not already tied off to specific values by a hard core
provider, the integrator is free to choose what values to place onEJ_PartNumeber[15:0] andEJ_Version[3:0].

4.2.2.1 EJ_ManufID[10:0]

EJ_ManufID[10:0]must be a compressed form of a JEDEC standard manufacturer’s identification code. See “S
4.2.2, "EJTAG Device ID Input Pins" on page 39”.

4.2.2.2 EJ_PartNumber[15:0]

EJ_PartNumber[15:0]is recommended to be a manufacturer-specific number identifying this core as a MIPS 4KE
A new physical cache configuration could facilitate a new value onEJ_PartNumber[15:0], but could also be an
increment of the number on theEJ_Version[3:0] input.

4.2.2.3 EJ_Version[3:0]

EJ_Version[3:0]is recommended to be unique for each new physical layout, with the sameEJ_PartNumber[15:0]input.

4.2.3 EJTAG Software Reset Pins

Two reset-related EJTAG outputs are controlled by corresponding bits in the EJTAG Control Register: Periphera
(EJ_PerRst) is controlled by the PerRst bit, and Processor Reset (EJ_PrRst) is controlled by the PrRst bit.

Another software reset-related pin is Soft Reset Enable (EJ_SRstE). This pin is driven from the SRE bit in the Debug
Control Register (the DCR is a memory-mapped register present within the 4KE core, accessible in Debug Mo

4.2.3.1 EJ_PrRst Signal

Processor Reset can be interpreted as “System Soft Reset”. When the PrRst bit is asserted by EJTAG debug s
the result must be one of two possible scenarios:

1. The entire system is reset. This could be achieved by connectingEJ_PrRst to chip (internal or external) soft reset
logic.

2. Nothing happens. EitherEJ_PrRstis left unconnected or the assertion is gated off by other logic like theEJ_SRstE
pin.

A protocol exists using the Rocc (Reset Occurred) bit for debug software to identify which of the two scenarios o
Figure 4-4 on page 40 shows one possible implementation for the use ofEJ_PrRst.

4.2.3.2 EJ_PerRst Signal

Peripheral Reset can be used as a soft reset of the peripherals surrounding the 4KE core. The effect of an ass
EJ_PerRstis implementation-dependent; however, it should never result in a reset of the 4KE core itself. Figure 4
page 40 shows one possible implementation of the use ofEJ_PerRst.
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4.2.3.3 EJ_SRstE pin

As described earlier, this signal can be used to control one or more Soft Reset sources in the system reset log
Figure 4-4 on page 40 for a possible implementation.

4.2.3.4 A Reset Logic Implementation

Figure 4-4 on page 40 shows a possible implementation of theEJ_PrRst, EJ_PerRst andEJ_SRstE pins in a system.
Note that in this example all the Reset control logic is place outside the chip containing the 4KE core. This req
extra output signals, but this need not be the case.

Figure 4-4 Reset Circuitry Implementation

Note:TheRST*input to the Reset Logic from the Probe Connector is a required connection when implementing E
into the system.

4.3 Multi-Core Implementations

In a chip configuration with multiple 4KE cores, all EJTAG TAP controllers can share one set of EJTAG TAP contr
pins. The MIPS-recommended daisy-chain connection for a Multi-Core configuration is shown in Figure 4-5 on pa
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Figure 4-5 Multi-Core Implementation

4.3.1 TDI/TDO Daisy-Chain Connection

In a Multi-Core implementation, one of the processor cores is often be the Master. In Figure 4-5 on page 41, the
core is first in theTDI/TDOdaisy-chain to get a low latency access to control and data registers in the Master core.
a large number of EJTAG TAP controllers are connected in the daisy-chain, the placement of the Master core be
significance.

The chip’s ETDO output enable is controlled by EJ_TDOzstate in the last core in the chain because this core dri
TDO chip pin.

4.3.2 Multi-Core Breakpoint Unit

The Multi-Core Breakpoint Unit (MCBU) shown to the right in Figure 4-5 on page 41 is an implementation-depen
block. Each core can signal whether or not it is in Debug Mode based on itsEJ_DebugMoutput. When doing Multi-Core
debug, a low latency entry into Debug Mode may be desired for all or some of the other processor cores on the
based on the entry of one of the processors into Debug Mode. For example, a Slave core might rely on full opera
the Master core; then the Master core’s entry into Debug Mode can trigger a Debug Interrupt (EJ_DINT) to the Slave
core(s). This would place each Slave core in Debug Mode with low latency after the Master core entered Debu
(depending on implementation, the latency would be less than 10 cycles).
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⇓ One or more Processor cores with EJTAG ⇓
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Debugger software can detect that the Master core has entered Debug Mode, and trigger this for the Slave core
might be supported by your Debug software as an automatic feature. The detection and the following Slave core(s
trigger would have to go through the serial TAP controller chain, which could take hundreds of cycles before the
core(s) enter Debug Mode.

The physical implementation and/or programmability of the MCBU is a system decision beyond the scope of th
document; however, if an MCBU is designed, theEJ_DebugM signal is a level-sensitive signal andEJ_DINT is rising
edge-triggered. Creating aDINT_x signal from a simple OR-function of one or moreDebugM_x signals does not have
the desired effect. A rising edge detection on aDebugM_xoutput signal is needed to generate the desired rising edge
aDINT_x input signal. Once in Debug Mode, the 4KE core ignores any subsequent Debug Interrupts onEJ_DINT.

4.4 EJTAG Trace

A 4KE core can support EJTAG Trace features, which enables real-time tracing of the Program Counter and loa
address and data values. The trace logic is included as a build time option. Four basic options are possible:

1. No trace logic included.

2. Trace logic to on-chip trace memory (embedded within the core).

3. Trace logic to support an off-chip trace probe (with off-chip trace memory).

4. Combination of options 2 and 3.

If options 1 or 2 are present, then theTC_output pins on the core will be statically driven to zero, and all theTC_inputs
are ignored. With option 2, access to the trace features and on-chip trace memory occurs through the standard
probe.

If options 3 or 4 are present, then the TCtrace Interface on the 4KE core is active and theTC_ inputs and outputs must
be connected to a core external Probe Interface Block (PIB), or tied off. If a PIB is not implemented then all theTC_
inputs should be tied low.

The specific implementation details for the PIB and how to connect it to the core can be found in theEJTAG Trace
Control Block Specification [4].
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Chapter 5

Coprocessor Interface

This chapter describes the MIPS Core Coprocessor Interface supported by the MIPS32™ 4KE™ processor co
MIPS Core Coprocessor Interface is described in the companion document, titledCore Coprocessor Interface
Specification[5]. The Core Coprocessor Interface is an optional feature in a 4KE core. If the 4KE core does not co
the Core Coprocessor Interface logic, then this chapter is irrelevant. This chapter discusses the specific 4KE
implementation of the Core Coprocessor Interface, in the following sections:

• Section 5.1, "Introduction"

• Section 5.2, "Coprocessor Instructions"

• Section 5.3, "Signal Configuration"

• Section 5.4, "Interface Protocols"

• Section 5.5, "Power Saving Issues"

5.1 Introduction

The 4KE core Coprocessor Interface allows a single Coprocessor 2 (COP2) to be connected to the integer uni
function of Coprocessor 2 is user-definable and is intended to allow special-purpose engines, such as a graph
accelerator that is integrated into the architecture. The 4KE core doesnot support an interface to a floating-point unit,
which is dedicated to Coprocessor 1 in the MIPS32™ architecture. The special handling for floating-point instru
needed in the integer unit, as well as the extra signaling needed between the integer unit and a floating-point un
present in a 4KE core.

The Coprocessor Interface has the following features:

• No late or critical signals are part of the interface. This allows for easier design and synthesis for coprocesso
designers.

• By keeping the interface as simple as possible, designers can concentrate on the coprocessor functionality rat
its interface.

• Minimal required interface logic, thereby minimizing area and power overhead.

• Performance is not compromised. This interface is compatible with all high-performance features of the 4KE
processor core family.

• Fully compliant to the MIPS Core Coprocessor Interface standard.

5.2 Coprocessor Instructions

A 4KE core supports all MIPS32-compliant COP2 instructions, except the load double (LDC2) and store double (S
instructions.Table 5-1 lists all the supported instructions and how they are decoded.
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Only instructions with the decode specified inTable 5-1may be sent to the coprocessor. If an instruction is not suppor
by the coprocessor, then a reserved instruction (RI) exception must be sent back to the 4KE core (see Section
"Coprocessor Exceptions").

The 4KE core only dispatches instructions to the coprocessor if the CU2 bit in the CP0Statusregister is set. Refer to the
MIPS32 4KE Processor Core Family Software User’s Manual for details on Coprocessor 2 instructions and CP0
registers.

Table 5-1 Supported Coprocessor 2 instructions

Instruction Decode Description

LWC2 IR[31:26] = 1100102
Load Word from memory to a Coprocessor 2 register.

COP2 register number = IR[20:16], sub-select = 0a.

SWC2 IR[31:26] = 1110102
Store Word to memory from a Coprocessor 2 register.

COP2 register number = IR[20:16], sub-select = 0a.

MFC2 IR[31:26] = 0100102 &
IR[25:21] = 000002

Move word from Coprocessor 2 register to processor general-purpose
register.

COP2 register number = IR[15:11], sub-select = IR[2:0]b.

CFC2 IR[31:26] = 0100102 &
IR[25:21] = 000102

Move word from Coprocessor 2 control register to processor
general-purpose register.

COP2 control register number = IR[15:11]c.

MTC2 IR[31:26] = 0100102 &
IR[25:21] = 001002

Move word to Coprocessor 2 register from processor general-purpose
register.

COP2 register number = IR[15:11], sub-select = IR[2:0]b.

CTC2 IR[31:26] = 0100102 &
IR[25:21] = 001102

Move word to Coprocessor 2 control register from processor
general-purpose register.

COP2 control register number = IR[15:11]c.

BC2F
BC2FL

IR[31:26] = 0100102 &
IR[25:23] = 0102 &
IR[16] = 02

Branch on Coprocessor 2 condition false (likely)d.
The condition code check from the coprocessor should be set if the
condition is False.

Condition is specified by IR[22:18].

BC2T
BC2TL

IR[31:26] = 0100102 &
IR[25:23] = 0102 &
IR[16] = 12

Branch on Coprocessor 2 condition true (likely)d.
The condition code check from the coprocessor should be set if the
condition is True.

Condition is specified by IR[22:18].

COP2 IR[31:26] = 0100102 &
IR[25] = 12

Perform Coprocessor 2 operation.

Operation is specified by IR[24:0].

Note: [a] The LWC2 and SWC2 instructions has no room to specify a sub-select COP2 register value. sub-select 0 must be assumed.

Note: [b] The MFC2 and MTC2 instructions target a COP2 register (0-31) with a sub-select (0-7), effectively making the COP2 register
file of size: 32x8 = 256 registers.

Note: [c] The CFC2 and CTC2 instructions target COP2 control registers (0-31). There is no sub-select field, making the COP2 control
register file of size: 32 registers.

Note: [d] The BC2 instructions use IR[17] to select between branch and branch likely type instructions. The coprocessor would typi-
cally not care to look at IR[17] for BC2 instruction decodes.
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5.3 Signal Configuration

The 4KE core Coprocessor 2 interface supports a subset of the possible features specified in theCore Coprocessor
Interface Specification. Following is a list of the supported features of the 4KE core Coprocessor Interface:

• A single COP2 coprocessor is supported. No support for the floating-point COP1 coprocessor.

• Data transfers are 32 bits. No support for 64-bit buses and 64-bit instructions (LDC2/SDC2).

• One issue group is supported (group 0). No support for dual (or more) issue.

• Data from the coprocessor can only be one instruction out-of-order.

• Data to the coprocessor is always sent in order.

• An instruction is never nullified.

From a static pin configuration point of view, the supported features listed above have the following consequence
to Table 2-3 on page 4 for a listing of all the 4KE core signals).

TheCP2_inst32_0 output is tied high (logic 1). The 4KE core is a MIPS32 compliant core only, and does not sup
any 64-bit features. All instructions assume the coprocessor behaves as a 32 bit device, mandated by always 
CP2_inst32_0. A possibleCP2_tx32_0output from a coprocessor1 to the core is not defined on the interface of the cor
and can be left unconnected on the coprocessor.

TheCP2_tdata_0[31:0]and theCP2_fdata_0[31:0]data buses are only 32 bits wide. 64-bit transfers are not suppor

TheCP2_tordlim_0[2:0] input is ignored and theCP2_torder_0[2:0] output is tied to 0002, since the 4KE core never
sends data out of order. The coprocessor attached to a 4KE core does not need to limit the use of out-of-order-ne
might not be true for other MIPS cores using the same interface. If a coprocessor is built which does not allow 
receives to be sent out-of-order, then it can drive theCP2_tordlim_0[2:0] signal to 0002.

TheCP2_fordlim_0[2:0] output is tied to 0012 and theCP2_forder_0[2:1] input is ignored. No more than one
out-of-order data return is supported. OnlyCP2_forder_0[0] is needed to define the out-of-order-ness of the data
received from the coprocessor. If data is sent to the 4KE core more than one out-of-order, then it would be a p
violation and the result from this is undefined.

TheCP2_null_0 output is tied low (logic 0). With the 4KE core, the only instruction that may be nullified is an
instruction in a branch likely delay slot (when the branch isn’t taken). The branch condition is evaluated so earl
dispatch of the delay slot instruction can be suppressed. TheCP2_nulls_0signal will still strobe once for each instruction
dispatched as required by the protocol. But no instruction is ever nullified.

Note: If theCP2_null_0 always being low when implementing the coprocessor is relied upon, then might not be
compatible with future versions of the 4KE or other MIPS cores.

TheCP2_reset output is driven directly from a register. This register is driven by the internal reset, and clocked b
core clock (SI_ClkInafter clock tree). This means that the assertion/deassertion is one cycle later than what the cor
This is not a problem as the first instruction after reset can never be a Coprocessor 2 instruction.

TheCP2_present input determines the presence of a coprocessor. If this input is deasserted (logic 0), then the
Coprocessor Interface is disabled. All inputs should be driven static to their inactive values, and all outputs mu
ignored. It is not possible to set the CU2 bit in the CP0Status register ifCP2_present is deasserted (0).

1 Static signal from a coprocessor, used to indicate it can only handle 32-bit transactions.
MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00 45

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.



Chapter 5 Coprocessor Interface

on or

is

xcept

n the
in

l.
occur.
5.4 Interface Protocols

Refer toTable 2-3 on page 4 for a complete listing of all the pins of the 4KE core.

The Coprocessor Interface is composed of several simple transfers:

• Instruction Dispatch - Starts coprocessor instructions.

• To COP Data - Transfers data to the coprocessor.

• From COP Data - Transfers data from the coprocessor.

• Coprocessor Condition Code Check- Transfers coprocessor condition check result to the 4KE core.

• Coprocessor Exceptions- Notifies the 4KE core whether any coprocessor exceptions happened for an instructi
not.

• Instruction Nullification  - Notifies the coprocessor whether instructions are nullified or not.

• Instruction Killing  - Notifies the coprocessor whether instructions can commit state or not.

All transfers use the following protocol:

• All transfers are synchronously strobed, that is, a transfer is only valid for one cycle (when the strobe signal 
asserted). The strobe signal is a synchronous signal and should not be used to clock registers.

• No handshake confirmation of transfer.

• Except for instruction dispatch, no flow control.

• Except for To/From COP data transfers, out of order transfers are not allowed. All transfers of a given type, e
To/From COP data transfers, must be in dispatch order.

• Ordering of different types of transfers for the same instruction is not restricted.

After an instruction is dispatched, additional information about that instruction must be later transferred betwee
coprocessor and the 4KE processor core. The additional information and the transfers required are summarizedTable
5-2.

Note:For each dispatch type given in the table, all listed transfers arerequiredto be completed. No transfers are optiona
however, after an instruction is killed or nullified, any additional transfers that have not already happened will not
Once an instruction is killed or nullified, no further transfers for that instruction can happen. Additionally, if an
instruction is killed, then all transfers for all previously dispatched instructions will not happen either, including
instructions dispatched in the same cycle that the kill of an older instruction is sent.

Table 5-2 Transfers Required for Each Dispatch

Dispatch Type Required Transfers

To COP Op

(LWC2/ MTC2/
CTC2)

• Instruction nullification or nota

• To Coprocessor data transfer

• Coprocessor exceptions or not

• Instruction killing or not

From COP Op

(SWC2/ MFC2/
CFC2)

• Instruction nullification or nota

• From Coprocessor data transfer

• Coprocessor exceptions or not

• Instruction killing or not
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Each transfer can occur as early as the cycle after dispatch, and there is no maximum limit on how late the trans
occur. Only the dispatch interfaces have flow control, so that once dispatched, all transfers can occur immedia

All transfers are strobed. The data is not buffered and is transferred in the cycle that the strobe signal is asserted
strobe signal is asserted for 2 cycles, then two transfers occur. For instruction dispatches (Arithmetic, To COP, an
COP instructions) the strobe signal (CP2_as_0, CP2_ts_0 or CP2_fs_0) is asserted in the cycle after the instruction i
dispatched. This is done in order to insulate the strobe signals from poor timing. The dispatch cycle is the cycle
the instruction busCP2_ir_0[31:0] is valid.

Figure 5-1 General Transfer Example

Figure 5-1 on page 47 above shows examples of the transfer of nullification information. All non-dispatch trans
follow the same protocol.

On edge 4,CP2_nulls_0 is asserted, signifying the null transfer for instruction A. SinceCP2_null_0 is deasserted
on edge 4, instruction A is not nullified. Instruction B is dispatched on edge 4 and it receives the null transfer in th
cycle at edge 5. Since it is the cycle after dispatch, this is the earliest possible time any transfer for instruction 
happen.Instruction C is dispatched at edge 5. The nullification transfer is delayed for some reason until edge 10
general example the instruction C is nullified. This will never happen on the 4KE core, also the nullify strobe is a
send in the cycle after dispatch on the 4KE core.

For all transfers except To COP Data and From COP Data, the ordering of the transfers is simple: all transfers
specific type (for example, nullification transfers) in a specific issue group must be in the same order as the order in
the instructions were dispatched. Other kinds of transfers can be interspersed—for example, if four arithmetic
instructions were dispatched, there could be two nullification transfers, followed by four exception transfers, fol
by two nullification transfers.

Arithmetic Op

(COP2b)

• Instruction nullification or nota

• Coprocessor exceptions or not

• Instruction killing or not

Arithmetic Op, Branch

(BC2b)

• Instruction nullificationa

• Condition code check results

• Coprocessor exceptions or not

• Instruction killing or not

Note: [a] The 4KE core will always signal not-nullified on all instructions.

Note: [b] For a description of this instruction, refer to the MIPS ISA definition.

Table 5-2 Transfers Required for Each Dispatch (Continued)

Dispatch Type Required Transfers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A CB

CP2_null_0

CP2_nulls_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_irenable_0
MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00 47

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.



Chapter 5 Coprocessor Interface

d,

KE core

d of this
r unit
er unit
t time

integer
eline
at the

sent.

umber
Note: If an instruction is killed or nullified, no remaining transfers for that instruction occur. In the cycle that the
instruction is being killed or nullified, transfers may occur, but will be ignored. Additionally, if an instruction is kille
all instructions dispatched after the killed instruction are also killed.

The Coprocessor Interface is designed to operate with coprocessors of any pipeline structure and latency; if the 4
requires a specific transfer by a certain cycle, then it will stall until the transfer has completed.

For transfers from the coprocessor to the integer unit, the allowable latencies are shown inTable 5-3. The “Stage
Needed” column shows the integer unit pipeline stage where the data is used; if data is not available by the en
stage, then the integer pipeline will stall. The “Min” column shows the minimum time after dispatch that the intege
can accept the data (always one cycle). The “Max” column shows the maximum time after dispatch that the integ
could receive the data (always an infinite number of cycles). The “Max Without Stalling” column shows the longes
after dispatch that the integer unit could receive the data without stalling.

Because of its pipeline structure, the 4KE core does not generate all allowable latencies for transfers from the 
unit to the coprocessor.Table 5-4summarizes these latencies. The “Stage Sent” column shows the integer unit pip
stage in which the transfer is performed. The “Min” column shows the shortest amount of time after dispatch th
integer unit will send the data. The “Max” column shows the longest time after dispatch that the data could be 

The “Max” latency is given in dispatches and thus defines the number of pending transfers to be made. It is the n
of pending transfers that defines the interface logic required in the coprocessor.

Table 5-3 Allowable Interface Latencies from a Coprocessor to the 4KE Core

From To
Stage

Needed
Min

(cycles)
Max

(cycles)

4KE Max
Without

Stalling (cycles)

Instruction Dispatch Coprocessor
Exceptions M 1 ∞ 1

From COP Instruction
Dispatch

From Coprocessor Data
Transfer M 1 ∞ 1

Branch Instruction
Dispatch

Coprocessor
Condition Code Check Ea 1 ∞ -1b

Note: [a] The 4KE cores does not have any branch prediction logic. Because of this, the new address (Branch taken or not) must be avail-
able in the E stage in order to have the address ready for the instruction following the branch delay slot.

Note: [b] The minus one (-1) indicates that the Coprocessor 2 Branch instruction will always cause a minimum of two stall cycles, while
waiting for the Condition Code Check to be returned.

Table 5-4 Interface Latencies from the 4KE Core to a Coprocessor

From To
Stage
Sent

Min
(cycles) Max

Instruction Dispatch Instruction
Nullification E+1 1a N/A

To COP instruction
Dispatch

To Coprocessor
Data Transfer A 2 1 dispatch later (2 outstanding transfers)

Instruction Dispatch Instruction
Killing A+1~ 3 2 dispatches later (3 outstanding transfers)

Note: [a] The null strobe (CP2_nulls_0) is an OR function of the dispatch strobes (CP2_as_0, CP2_ts_0 and CP2_fs_0).
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5.4.1 Instruction Dispatch

This transfer is used to signal the coprocessor to start coprocessor instructions. Data transfer instructions includ
that move data to the coprocessor from the integer processor core (To COP Ops), and those that move data fr
coprocessor to the integer processor core (From COP Ops).

Because data transfers for the To COP and From COP instructions occur later than the dispatch of the instruct
coprocessor itself must keep track of data hazards and stall its pipeline accordingly. The integer processor core d
track coprocessor data hazards.

In a 4KE core, instructions are dispatched to the coprocessor in the last cycle of the E-stage of the integer pipe
Although the interface allows the coprocessor and integer pipelines to operate independently, it is important th
dispatch occurs to both in the same cycle to ensure that all subsequent transfers are properly synchronized. The 4
may not dispatch a coprocessor instruction when the integer pipeline is stalled. This is necessary to allow prop
exception handling.

CP2_as_0, CP2_ts_0 andCP2_fs_0 are asserted in the cycle after the instruction is driven. These signals are dela
strobe signals, and although this delay complicates the functional interface, it enables the processor to achieve ve
timing on these signals. Without this delay, these signals would have been timing-critical.

Because the above instruction strobes are delayed, the coprocessor would normally be required to register
CP2_ir_0[31:0] in every cycle and conditionally use it in the following cycle depending on the instruction strobes.
protocol has the side effect of registering non-coprocessor instructions and partially processing them, thus pot
increasing power consumption. TheCP2_irenable_0 signal compensates for this effect by enabling the coprocesso
avoid registering instructions that will never be dispatched to it.CP2_irenable_0 low guarantee that this cycle is not a
dispatch cycle.CP2_irenable_0 high (1) indicates that this cycle might be a dispatch cycle.CP2_irenable_0 is a late
signal, making its timing critical. It should only be used to drive the enable input of the instructions latches.

Because of the tight relation between dispatch and required return from the coprocessor on the 4KE core, it is
recommended to do some amount of instruction decode in the dispatch cycle, and latch this decode based on
CP2_irenable_0. This makes it more likely that data/exception returns from the coprocessor can be sent in the cycl
dispatch, and provide stall free operation in the 4KE core.

Only one instruction strobe can be asserted at one time:CP2_as_0, CP2_ts_0, andCP2_fs_0.

CP2_inst32_0 andCP2_endian_0 are both part of an instruction dispatch. They instruct the coprocessor to:

• work in MIPS32-compatibility mode (CP2_inst32_0 high)

• Handle internal byte/halfword coprocessor instructions as big-endian operations (CP2_endian_0 high)

Because the 4KE core is a MIPS32-compatible core and does not support any MIPS64 specific features, the s
CP2_inst32_0 is tied high (1).

TheCP2_endian_0 signals are asserted during dispatch to notify the coprocessor of the proper byte-ordering m
use.
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Figure 5-2 Instruction Dispatch Waveforms

Figure 5-2 shows example waveforms of four instruction dispatches.

• On edge 2, instruction A is dispatched.CP2_ir_0[31:0], CP2_inst32_0 andCP2_endian_0 are all valid and
CP2_irenable_0 is driven high to indicate that this might be a dispatch cycle. On edge 3, instruction A is strob
an arithmetic instruction byCP2_as_0.

• On edge 5, instruction B is valid onCP2_ir_0[31:0]. Instruction B is also an arithmetic instruction. because the
CP2_abusy_0 signal is detected high on edge 5, preventing arithmetic instruction strobes, the instruction is no
strobed on edge 6. On edge 8,CP2_abusy_0 is detected low, and the instruction is then strobed on edge 9 using
CP2_as_0.

• On edge 6 CP2_fbusy_0 was asserted. Because no From COP Op instruction was attempted dispatched in 
this assertion is ignored.

• On edge 9, instruction C is dispatched. This is a From COP Op, requesting data from the coprocessor to be se
4KE core.CP2_fbusy_0 is not driven high on edge 9, and thus instruction C is strobed on edge 10.

• On edge 12, instruction D is valid, andCP2_irenable_0 is driven high. Instruction D is a To COP Op instruction.
CP2_tbusy_0 is not asserted on edge 12, but for some internal reason in the 4KE core. Instruction D is not str
until edge 14. On edge 14CP2_tbusy_0 is driven high from the coprocessor, but this is too late to prevent the
instruction strobe onCP2_ts_0.

The CP2_abusy_0, CP2_tbusy_0 and CP2_fbusy_0 signals are the only means for the coprocessor to preven
core to dispatch instructions. When dispatched, all subsequent transactions for each instruction can happen imm
and the coprocessor must have buffers available to receive any information that might be transmitted from the 
the coprocessor. The reason to have 3 different instruction strobes is to enable a coprocessor to prevent one t
instruction

5.4.2 To Coprocessor Data Transfer

The Coprocessor Interface transfers data to the coprocessor after a To COP Op has been dispatched. Only To C
utilize this transfer. The coprocessor must have a buffer available for this data after the To COP Op has been disp
If no buffers are available, then the coprocessor must prevent dispatch by assertingCP2_tbusy_0.

The Coprocessor Interface allows out-of-order data transfers. Data can be sent to the coprocessor in a differen
from the order in which the instructions were dispatched. When data is sent to the coprocessor, theCP2_torder_0[2:0]
signal is also sent. This signal tells the coprocessor if the data word is for the oldest outstanding To COP data tra
the second oldest. The coprocessor can prevent the 4KE from reordering To COP Data by drivingCP2_tordlim_0[2:0]
to 0002.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

CP2_tbusy_0

CP2_abusy_0

CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_irenable_0

CP2_ts_0

CP2_fs_0

B C D
CP2_inst32_0

CP2_endian_0

CP2_fbusy_0
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Note: The 4KE never sends data out of order. ThusCP2_torder_0[2:0] is tied to 0002 andCP2_tordlim_0[2:0] is
ignored.

Only word transfers are supported and the data is sent onCP2_tdata_0[31:0].

The integer unit can transfer data to the coprocessor in the cycle after it is received from the memory subsystem
event of a cache miss, this can potentially happen many cycles after dispatch.

Figure 5-3 To Coprocessor Data Waveforms

Figure 5-3 shows waveforms for 3 To COP Op instructions and the data transfer associated with this instruction
edges 2, 4 and 5 the To COP Op instructions A, B and C respectively are dispatched to the coprocessor. Beca
are To COP Ops, theCP2_ts_0 strobe is used to strobe the instruction dispatch.

On edge 5, the data associated with instruction A is valid. This is indicated by theCP2_tds_0driven high (1). Because
CP2_torder_0[2:0] is 0002 ties the data to the oldest outstanding To COP Op, which is instruction A.

On edge 6, data for instruction B is valid. This is the earliest after dispatch, that data will be sent from the 4KE cor
interface must however support data to be sent as early as the cycle after dispatch (edge 5 for instruction B) to
compliant with other MIPS cores using the Core Coprocessor Interface.

Data for instruction C is not sent until edge 12. This could be due to a data-cache miss, but could have many oth
core internal reasons. The Coprocessor must support any cycle delay from instruction dispatch to data transm
COP Ops.

5.4.3 From Coprocessor Data Transfer

The Coprocessor Interface transfers data from the coprocessor to the integer processor core after a From COP
been dispatched. Only From COP Ops utilize this transfer. Note that the 4KE core has buffers for this data that e
the transfer to occur as early as the cycle after dispatch.

The Coprocessor Interface allows out-of-order transfer of data. That is, data can be sent from the coprocessor
different order from the order in which the instructions were dispatched. When data is sent from the coprocess
CP2_forder_0[2:0]signal is also sent. This signal tells the integer processor core if the data is for the oldest outsta
From COP data transfer or the second oldest. The 4KE core supports a maximum of 1 out-of-order transfer an
CP2_fordlim_0[2:0] = 1 0012.

Note: It is illegal for a coprocessor to driveCP2_forder_0[2:0] > 1 0012.

Only word transfers are supported, and the data must be sent onCP2_fdata_0[31:0].

For both memory stores (SWC2) and move instructions (MFC2/CFC2), the integer pipeline can stall if data is n
available by the M stage. This is because the data to be stored/moved to a register is needed early in the follow
A-stage. By receiving the data in the M-stage, the Coprocessor Interface can have non-critical timing.
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Figure 5-4 From Coprocessor Data Waveforms

Figure 5-1 shows example waveforms for 4 From COP Op instructions, and the data transfer associated with th
instructions. On edge 2, 4, 5 and 9 the From COP Ops A, B, C and D respectively are dispatched from the intege
They are all From COP Ops, thusCP2_fs_0 is used to strobe the instruction.

On edges 5 and 6, data for instruction A and B are returned from the coprocessor. The data is returned in orde
instruction dispatch, andCP2_forder_0[2:0] is consequently driven to 0002. Data for instruction B is sent in the cycle
after dispatch. This is needed to ensure stall free operation in the 4KE core. The data for instruction A is one c
delayed, causing one stall cycle in the 4KE core.

On edge 11, data for instruction D is returned to the integer core. This is the second oldest outstanding data tr
CP2_forder_0[2:0] is driven to 1 0012 to indicate one out of order in the data transfer.

On edge 12, the data for instruction C is finally returned.CP2_forder_0[2:0]is driven to 0 0002 because this is the oldest
outstanding data transfer.

5.4.4 Condition Code Checking

The Coprocessor Interface provides signals for transferring the result of a condition code check from the coproce
the integer processor core. Only BC2 instructions utilize this transfer. These instructions are dispatched to both
integer processor core and the coprocessor.

For each instruction dispatched, a result is sent back to the integer processor core that says whether or not to 
branch.

For this reason, the coprocessor must interpret the type of instruction to decide whether or not to execute it.
Customer-defined BC2 instructions are thus possible. Four main flavors of BC2 instructions exists (BC2T, BC2
BC2F and BC2FL). The integer core does not care if it is a True or False branch. It will only distinguish between a b
and a branch likely type instruction. The coprocessor is the unit that determines if the branch should be taken or
taken branch is indicated by asserting the condition code checkCP2_ccc_0 = 1. The not taken branch is indicated by
CP2_ccc_0 = 0.

With the 4KE core, the address of the second instruction following a branch is calculated in the branch instruct
E-stage, which is the dispatch stage. The condition contributes to the address calculation. The BC2 instruction
dispatched to the coprocessor, but stalled in the IU’s E-stage until the coprocessor returns the condition result.

The condition code check from the coprocessor is registered on the input to the 4KE core. The values are not av
until the cycle after return from the coprocessor.

Note: The 4KE core always stalls for a minimum of 2 cycles in E-stage for any BC2 instruction sent to the coproc
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Figure 5-5 Condition Code Check Waveforms

Figure 5-5 shows an example waveform for two BC2 instructions. BC2 instructions belong to the arithmetic COP
group of instructions and the dispatch is thus strobed using the CP2_as_0 strobe.

On edges 2 and 6, BC2 instructions are dispatched from the integer unit. The condition code check for instructio
returned as fast as possible, which is on edge 3. This means that the stall penalty was kept at the minimum of 2
CP2_ccc_0 is set (12) indicating to the integer core to go ahead and take the branch.

On edge 11, condition code for instruction B is returned. The four cycle extra delay means that the 4KE core w
for a minimum of 6 cycles for this BC2 instruction.CP2_ccc_0is driven low indicating to the integer core that the branc
is not to be taken.

5.4.5 Coprocessor Exceptions

All instructions dispatched utilize this transfer. It is used to signal if an instruction caused an exception in the
coprocessor. This transfer must happen even if the instruction did not cause an exception in the coprocessor.

When a coprocessor instruction causes an exception, the coprocessor must signal this to the integer processor
can start execution from the exception vector. The coprocessor can signal a Reserved Instruction exception (RI)
instruction dispatched.

Signalling for Reserved Instruction exceptions is divided between the integer processor core and the coproces
follows:

• The integer processor core signals Reserved Instruction exceptions for non-arithmetic coprocessor instructio
are not valid To COP Ops or From COP Ops:

– (IR[31:26] = 0100102) & (IR[25:24] = 002) & (IR[22:21] = 112): Reserved To/From COP Ops.

– (IR[31:26] = 0100102) & (IR[25:24] = 002) & (IR[22:21] = 012): unimplemented DMFC2/DMTC2 COP Ops.

– (IR[31:30] = 112) & (IR[28:26] = 1102): unimplemented LDC2/SDC2.

• The coprocessor hardware must signal Reserved Instruction exceptions for all unimplemented arithmetic copr
instructions:

– (IR[31:26] = 0100102) & (IR[25] = 12) & (IR[24:0] = unimplemented COP2 instruction)

– (IR[31:26] = 0100102) & (IR[25:24] = 012) & (IR[23:21] = unimplemented Branch instruction).

Note: The 4KE core does not dispatch the instructions that it is responsible for RI exception signaling. This mig
be the case for other integer cores featuring this interface. In this case, the instruction can always later be nulli
killed. A fully compliant coprocessor must be able to handle this and is allowed to signal no-exception on these
instructions.

The coprocessor should only signal Coprocessor 2 exceptions (C2E) for any implemented COP2 instruction wh
an execution problem. All unimplemented legal COP2 instructions should signal an RI exception.
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Note: For imprecise exceptions, the exception sent is not related to the current instruction, the C2E exception ca
be sent on dispatched COP Ops that are NOT part of the instructions that the integer core are guaranteed to sign
defined above.

The coprocessor may also signal one of two implementation-specific exception codes (IS1 and IS2). These ex
codes can be used to trigger special software exception handling routines. A special handler can be started quick
exception handler does not need to read a specific coprocessorCause register, as might be needed on the general C2
exception. The rules for C2E exception also apply to IS1 and IS2 exceptions.

Note: A coprocessor can signal an exception for all To/From COP Ops. An exception on a To/From COP Op ca
depend on the associated data, except for the data sent from the integer core on a CTC2 instruction1.

The integer processor core detects Coprocessor Unusable exceptions for all coprocessor instructions.

The 4KE core needs the exception transfer for all instructions in the M-stage to avoid stalling. It must signal exce
in the first cycle of the A-stage, and will stall in the M-stage if it has to wait for the transfer.

If imprecise coprocessor exceptions are allowed, then the coprocessor can use the “No exception” signal imme
after dispatch. This will prevent stalling in the integer pipeline while waiting for precise results; if an exception d
occur for that instruction, then a subsequent coprocessor instruction can be flagged as exceptional (although imp
or else an interrupt could be signalled through the normal integer processor core interrupt inputs (SI_Int[5:0]).

Figure 5-6 Exception Waveforms

Figure 5-6shows example waveforms for an exception return from three coprocessor instructions. In this examp
exception returns are all arithmetic COP Ops, andCP2_as_0 is used to strobe the dispatch.

On edges 2, 6 and 7, instructions A, B and C respectively are dispatched. A is an unimplemented arithmetic instr
causing a Reserved Instruction exception (RI). B is an implemented arithmetic instruction, as is C, but some er
occurred while executing the instruction, causing a C2E exception.

On edge 3, an RI exception for instruction A is returned to the integer core.CP2_excs_0 set (12) signals that the
CP2_exc_0is valid.CP2_exc_0driven high (12) signals that a valid exception is on CP2_exccode[4:0]. Refer toTable
2-3 on page 4 for descriptions of the valid exception bit values.

On edge 9, no exception is returned for instruction B. On edge 11, the C2E exception for instruction C is returned
integer core.

1 Exception based on the data sent on a CTC2 is possible if the control value written indicates that the instruction should always cause
exception.
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5.4.6 Instruction Nullification

All instructions dispatched utilize this transfer. Used to signal if an instruction was nullified in the integer processor
this transfer happens even if an instruction was not nullified so that the coprocessor knows when it can begin op
of subsequent operations that depend on the result of the current instruction.

Normally, an instruction is killed only when the pipeline is being flushed because an exception occurred. In this ca
subsequent instructions in the pipeline (both coprocessor and integer core pipelines) are also killed. An instructio
also be killed because it is in the delay slot of a branch-likely instruction that did not branch. This type of killing is c
instruction nullification. In this case, subsequent instructions in the pipeline are unaffected by the nullification.

Nullification must be performed in an early stage of the pipeline to ensure that subsequent instructions can beg
the correct operands.

In the cycle that an instruction is nullified, other transfers for that instruction may still occur, but no further transfe
that instruction can occur in subsequent cycles. Exceptions caused by a nullified instruction are masked by the
processor core.

Note: The 4KE core never nullifies an instruction. No nullify is always transferred in the cycle after dispatch.

Nullification transfers follow the generic example given in Figure 5-1 on page 47.

5.4.7 Instruction Killing

All instructions dispatched utilize this transfer. This is used to signal if an instruction can commit state or not. T
transfer happens even if an instruction is not being killed so that the coprocessor knows when it can writeback
for the instruction.

Due to various exceptional conditions, any instruction may need to be killed. The integer processor core contain
which tells the coprocessor when to kill coprocessor instructions.

When a coprocessor instruction is being killed because of a coprocessor-signalled exception, the coprocessor m
to perform special operations. For example, if an arithmetic COP2 instruction signalled a C2E exception, then 
killed due to this exception. Some internal status bits might need to be updated before clearing the pipe. On th
hand, if that same instruction was killed because of a higher priority exception, those status bits must not be up
For this reason, as part of the kill transfer, the integer processor core tells the coprocessor if the instruction is kill
to a coprocessor-signalled exception or not.

When a coprocessor instruction is killed, all subsequent coprocessor instructions that have been dispatched a
killed. This is necessary because the killed instruction(s) may affect the operation of subsequent instructions (f
example, because of bypassing). In the cycle in which an instruction is killed, other transfers may occur, but af
cycle, no further transfers occur for any of the killed instructions. A side-effect of this is that the other instructions
are killed do not have a kill transfer of their own. In effect, they are immediately killed and thus their remaining tran
cannot be sent, including their own kill transfer. Previously nullified instructions do not have a kill transfer eithe
because once nullified, no further transfers can occur.

Note: If the integer processor core dispatches a coprocessor instruction in the same cycle that a kill is being sign
the coprocessor, then that instruction is also considered killed.

The integer unit knows in an instruction’s A stage whether the instruction is to be killed or not. In order to avoid cr
timing signals being passed directly to the coprocessor, the integer unit will register its A stage kill signal before se
it to the coprocessor.
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Figure 5-7 Instruction Killing Waveforms

Figure 5-7 shows example waveforms for instruction killing.

On edges 2, 6 and 7, instructions A, B and C are dispatched.

On edge 5, instruction A is notified of a no-kill. This instruction can now commit internal state and register writes i
coprocessor.

On edge 12, instruction B is killed. The value of (102) onCP2_kill_0[1:0], indicates that the instruction was not killed
due to an exception sent by itself. Instruction B therefore does not commit any state or register bits in the copr
If CP2_kill_0[1:0] was (112), then the B instruction could commit state bits, indicating the cause of the exception it
(not shown).

Instruction C never gets aCP2_kills_0strobe, because the killing of instruction B also killed instruction C. An indirect
killed instruction like instruction C can never commit any state or register bits in the coprocessor.

5.5 Power Saving Issues

The power saving issues have already been touched on in the previous sections. This section specifies what to
what not to do in order to minimize power dissipation in the 4KE core and the coprocessor.

5.5.1 No coprocessor Present

If a hard-core version of a 4KE core is being used that includes the Coprocessor Interface, but there is no plan to
a coprocessor to the core, then the following must be observed:

• Tie CP2_present low (0). Tying this input low, will prevent any use of the Coprocessor Interface.

• Tie all strobe inputs (CP2_fds_0, CP2_cccs_0andCP2_excs_0) low (0). If the 4KE core is implemented using gated
clocks on local registers, then the strobe inputs on each bus are used as the enable signal in the clock gating
the input capture registers.

• Tie all other inputs to a static value. All other inputs are ignored, whenCP2_present is low (0).

The above rules are very simple to implement. Tie allCP2_xxandCP2_xxinputs to the 4KE core low (0) if there is no
coprocessor attached to the integer core.

5.5.2 How to UseCP2_idle

CP2_idleis an input to the 4KE core. When a coprocessor is attached to the core, it is important to use this input pr
in order for theWAIT  instruction to work effectively.

TheWAIT instruction enables power saving features within the 4KE core. WhenWAIT is executed, the 4KE core will
stall the front of the pipe, and wait for all older instruction and pending bus activity to complete. Once this is dete

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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CP2_ir_0[31:0]

CP2_as_0

SI_ClkIn

CP2_kill_0[1:0]

B C

0 2
56 MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.



5.5 Power Saving Issues

aken

icitly

serted

external

ree

e

clock to
cation
erfaces
all but about one hundred flops have their clock gated off via one top-level clock gating circuit. The only way to reaw
the core is to signal an interrupt onSI_Int[5:0], SI_NMI or EJ_DINT, or by resetting the core usingSI_Reset or
SI_ColdReset.

While the WAIT instruction ensures that no new instructions go down the pipe in the integer core, nothing is impl
done to tell the coprocessor to prepare for a possible stopping of its clock. This is where theCP2_idlesignal is used. The
coprocessor must assert this signal high whenever no instruction execution occurs within the coprocessor.CP2_idle is
part of the logic that determines when the top level clock gating element can turn off the clock. If this signal is deas
then the clock will never be gated off in the 4KE core, and the whole purpose of theWAIT  instruction is lost. The
CP2_idle input is ignored whenCP2_present is low.

It is important to note that theCP2_idleinputcannotbe used to reawaken the 4KE core. After theWAIT instruction has
actively stopped the main clock to most of the 4KE core flops, a deassertion ofCP2_idlewill restarts this clock but leaves
the processor issuing NOPs down the pipe. The coprocessor cannot awaken the core by deassertingCP2_idle.If some
external source requires service from either the integer core or the coprocessor (via the integer core), then this
source must assert an interrupt directly to the 4KE core.

5.5.3 Gating the Clock to the Coprocessor

For power reasons, the designer of the coprocessor is encouraged to use a top-level clock gater on the clock t
distributed within the coprocessor. The 4KE core has an output,SI_Sleep,which indicates when the internal clock in the
integer core is stopped.Figure 5-8 shows an example of how to implement and control a top-level clock gater in th
coprocessor.

Figure 5-8 Use of SI_Sleep for Clock-Gating in the Coprocessor

5.5.4 Using strobe signals as gating inputs on the sub-interfaces

Each of the sub-interfaces of the Coprocessor Interface has a strobe signal associated with it.

Figure 5-9 on page 58 shows how this strobe signal can be used as the enable input to a clock gater driving the
the corresponding data portion of the interface. The “To Data” interface is shown as an example. Instruction nullifi
and instruction killing can use the same scheme, but the low number of bits in the data portion of these two sub-int
might not make it worth the effort.

The instruction dispatch interface is different as its strobe signals arrive one cycle after the instruction word.

4KE core

Clock Input
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SI_ClkIn
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MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00 57

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.



Chapter 5 Coprocessor Interface

l

ctions
aintain
Figure 5-9 Clock-Gating of To Data Registers in Coprocessor

Figure 5-10 shows the intended use ofCP2_irenable_0. CP2_irenable_0 is usedonly as a gated-clock enabling signa
when the clock-gating on the capture of the instruction word is introduced. For all other purposes, theCP2_as_0,
CP2_ts_0 andCP2_fs_0 are the true qualifiers for a valid instruction.

Figure 5-10 Clock Gating of Instruction Registers in Coprocessor

The Pre-decoding block inFigure 5-10 represents combination logic before the receiving flops for the instruction
register. This block is most likely needed before the Instruction register if stall-free operation on coprocessor instru
in the 4KE core is to be maintained. Refer to Table 5-4 on page 48, for information on allowable latencies to m
stall-free operation.
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Chapter 6

Scratchpad RAM Interface

The Scratchpad RAM (SPRAM) option on a MIPS32™ 4KE™ core is designed to provide low-latency access to on
memories. SPRAM is supported for both instruction and data references. The SPRAM port is accessed in paral
the caches. This saves a number of cycles that would normally be required going through the BIU and the EC in

The pin list associated with the SPRAM interface was introduced inChapter 2, “Signal Description,” on page 3. This
chapter contains further details about the use of the interface in a system. The chapter contains the following m
sections:

• Section 6.1, "SPRAM Features"

• Section 6.2, "SPRAM Overview"

• Section 6.3, "SPRAM Interface Transactions"

• Section 6.4, "External Access to Scratchpad Memory"

• Section 6.5, "SPRAM Initialization"

• Section 6.6, "Using the same design for ISPRAM and DSPRAM"

• Section 6.9, "Reference Design"

6.1 SPRAM Features

SPRAM combines some features of main memory and caches. SPRAM has the following features:

• A SPRAM data array can be up to 1MB in size, much larger than the maximum 64KB cache size.

• There are separate interfaces to instruction SPRAM (ISPRAM) and data SPRAM (DSPRAM). The presence
SPRAM on the I-side or D-side can be independently configured.

• The ISPRAM and DSPRAM interfaces are not completely symmetric. There are no stores to the ISPRAM, so
asymmetry saves some pins.

• A full tag array is not needed for SPRAM. The equivalent tag functionality is normally replaced by a simple d
of the physical address to determine hit or miss.

• The cache way-select (WS) array is not needed for SPRAM.

• A SPRAM port logically replaces one way of a cache. If both SPRAM and cache are present, then the maxim
cache associativity is 3.

• Stores to a data SPRAM only go to the scratchpad, and are never written to main memory. For local data, th
reduce the bus bandwidth associated with store traffic, as compared to the write-through or write-back proto
employed by stores to a data cache.

• Instruction SPRAM can service uncached references, enabling processor boot with no EC interface accesse

• Backstalling. The SPRAM port can stall the core if the SPRAM array was busy the previous cycle or if data is
ready. This can enable other sources to access the SPRAM without the need for dual-porting the array. This is
for example, if there is a DMA engine filling the SPRAM or if a unified I/D SPRAM is desired. A cache, in contr
has fixed single-cycle timing.
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6.2 SPRAM Overview

A block diagram of a basic 4KE system with SPRAM functionality is shown inFigure 6-1.

The SPRAM interface is designed to be flexible enough to work with a variety of system designs. A variety of me
devices can be connected to the SPRAM interface: SRAM, ROM, flash, etc. If desired, memory-mapped functio
also be connected, as long as the interface protocol is met. Multi-ported devices can also be used; in this case
ISPRAM or DSPRAM interface is logically connected to just one of the ports, with other system logic unrelated t
4KE core utilizing the other port(s).

Figure 6-1 Basic SPRAM Block Diagram

The SPRAM array effectively replaces a cache way and is always located at the last cache way. A SPRAM array
used with or without caches. If caches are present in conjunction with SPRAM, then the maximum cache assoc
is 3. The existence of an ISPRAM or DSPRAM interface must be selected at build time for the 4KE core. Even if se
at build time, an SPRAM device need not be connected to the interface. In this case, the SPRAM-related core inp
should be tied off to 0.

The SPRAM array, like the cache arrays, is indexed with a virtual address and the “tag” comparison (really just d
logic for an SPRAM) is performed using a physical address. Note that because the SPRAM “way” can be larger th
1KB minimum page size, it is possible to have virtual aliasing in the SPRAM. (The potential aliasing issue exis
in TLB-mapped regions with the 4KEc™ core; with the fixed MMU in the 4KEm™ and 4KEp™ cores, the effective
minimum page size is 512MB). Virtual aliasing occurs when a single physical address is accessed via two diffe
virtual addresses that can simultaneously be resident in memory. This is not handled by the hardware and progr
must be aware of it.

During normal operation, it will be impossible for a reference to hit in both the SPRAM and cache. If this error cond
does occur via manipulation of the cache or SPRAM tags, the cache overrides the SPRAM and the SPRAM hit ind
is ignored.

6.2.1 SPRAM Differences versus a Cache

SPRAM behaves much like a cache way, with a few exceptions:

• Software must ensure a SPRAM entry has been initialized before it is read, to avoid reading spurious data.

• ISPRAM never refills automatically. To move instructions into the SPRAM, software must use the CACHE
instruction.

• DSPRAM does not fill automatically, either. It should normally be initialized with stores to the address range.

4KE core DSPRAMISPRAM

DSPRAM i/fISPRAM i/f

EC i/f
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• Store operations which hit in the DSPRAM do not produce writes to main memory, unlike write-through store
hit in the cache and write to main memory.

• The SPRAM array is not required to hold the last read value.

6.2.2 Independent Tag/Data accesses

The D-side SPRAM interface has independent tag and data ports. This is done to aid the efficiency of stores. A
must perform a lookup to determine if/where to write the data, then the actual data must be written. Because the
does not need to access the data array, these operations can occur in parallel if the data writes are buffered w
core, as described further in Section 6.2.4, "Delayed Stores".

Many of the signals on the SPRAM interface apply to only one of the tag/data accesses, while others apply to bothTable
6-1 shows which signals are related to tag access, data access, or both and when they are logically valid.

Table 6-1 SPRAM Interface Cycle Timing

Signal Name Port Dir.

Typical
Timing,
as % of

min.
cycle Validity relative to strobes/stalls

ISP_Addr Both Out 80 This is valid during the cycles that RdStr, TagWrStr, or DataWrStr are asserted. If Stall
is asserted, this value will be held until the cycle that Stall is deasserted.

ISP_RdStr Both Out 90 Asserted when tag and data lookups are being performed.

DSP_TagAddr Tag Out 80 This is valid during the cycle that TagRdStr or TagWrStr is asserted. If Stall is asserted,
this value will be held until the cycle that Stall is deasserted.

DSP_TagRdStr Tag Out 90 Asserted when a tag lookup is being performed

{I,D}SP_TagWrStr Tag Out 90 Asserted when a CACHE instn is writing the tag - note: this will never be asserted in
the cycle after TagRdStr/RdStr to avoid a conflict on TagCmpValue

DSP_TagCmpValue Tag Out 40
For reads, this is valid the cycle after TagRdStr/RdStr. If Stall is asserted, this value
will be held until the cycle after Stall is deasserted.
For writes, this is valid the same cycle as TagWrStr.

DSP_DataAddr Data Out 80
This is valid during the cycle that DataRdStr or DataWrStr is asserted. If Stall is
asserted the following clock, this value will be held until the cycle that Stall is
deasserted.

DSP_DataWrValue Data Out 80 This is valid in the same cycle that DataWrStr is asserted. If Stall is asserted the
following clock, this value will be held until the cycle that Stall is deasserted.

ISP_DataTagValue

Data Out 40 This is valid in the same cycle that DataWrStr is asserted. If Stall is asserted the
following clock, this value will be held until the cycle that Stall is deasserted.

Tag Out 40
For reads, this is valid the cycle after TagRdStr/RdStr. If Stall is asserted, this value
will be held until the cycle after Stall is deasserted.
For tag writes, this is valid the same cycle as TagWrStr.

{I,D}SP_DataRdStr Data Out 90 Asserted when a data read is being performed - this will never be asserted unless
TagRdStr is also asserted.

{I,D}SP_DataWrStr Data Out 90 Asserted when a data write is being performed.

DSP_DataWrMask Data Out 80 Valid when DataWrStr is asserted

{I,D}SP_DataRdValue Data In 60
For single cycle access, read data should be returned the cycle after DataRdStr/RdStr
is asserted. For multi-cycle accesses, read data should be returned in the same cycle
that stall is deasserted.
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6.2.3 Timing Considerations

The SPRAM interface, unlike the other external interfaces on a 4KE core, is not fully registered; however, all signa
synchronous to the rising edge of the primary core clock,SI_ClkIn. Outputs on the SPRAM interface may have a
significant amount of logic after the preceding flop(s), and inputs may go through some combinational logic before
registered by the core. This situation complicates timing analysis associated with the core, but is necessary in 
achieve maximum performance of the interface.

The expression of timing constraints for the SPRAM interface depends on many factors, such as maximum tar
frequency, process technology, standard cell library characteristics, setup and access times for the SPRAM ar
so it is difficult to provide a generic set of timing guidelines that will apply in all situations. The “Typical Timing”
column inTable 6-1 shows the timing of SPRAM interface signals, expressed as a percentage of the minimum t
period, since most users are usually interested in achieving the maximum possible frequency of the core.

Many of the outputs arrive late in a cycle, so the external SPRAM block can’t perform much additional logic on the
the cycle they are driven, without adversely affecting the overall cycle time of the core. The*_Hit and especially*_Stall
signals are critical inputs to the core. Care must be taken in the amount of logic performed by the external SPRAM
when driving these signals. For example, stall generation based on the decoding of the physical address
(DSP_TagCmpValueor ISP_DataTagValue) is probably not possible if maximum frequency is desired. For lower targ
frequencies, of course, the timing constraints shown inTable 6-1 can be relaxed.

6.2.4 Delayed Stores

A store buffer exists within the core for holding the last store data. Due to the separate tag and data accesses 
in Section 6.2.2, "Independent Tag/Data accesses", the store data written to the DSPRAM data array is actually
previous store, while the “tag” address is for the current store. This means that the DSPRAM data array for a s
store is not guaranteed to be written until thenextstore is executed in the pipeline. During cycles in which the DSPRA
is otherwise idle, pending store data can be written with no corresponding tag access. If the store buffer is empt
the current store is processed, then only the “tag” transaction will occur.

{I,D}SP_TagRdValue Tag In 70
For single cycle access, tag value should be returned the cycle after TagRdStr/RdStr is
asserted. For multi-cycle accesses, tag value should be returned in the same cycle tha
stall is deasserted.

{I,D}SP_Hit Tag In 60 For single cycle access, this should be valid the cycle after TagRdStr/RdStr is asserted.
For multi-cycle accesses, this should be valid in the same cycle that Stall is deasserted

{I,D}SP_Stall

Both

In 40

The Stall signal can be related to either Tag or Data access. Because both Tag and Dat
accesses can occur at the same time, the input should be the OR of both Tag and Data
stall sources.

Tag
Should be asserted in the cycle after TagRdStr/RdStr if hit determination cannot be
returned or tag value is not available. Remains asserted until the lookup can be
completed. It is not possible to stall a tag write.

Data

Should be asserted in the cycle after DataRdStr/RdStr if read data cannot be returned.
Remains asserted until the read data is available.
Should be asserted in the cycle after DataWrStr if the data write has not been
completed.

{I,D}SP_Present Both In Static Static configuration input

Table 6-1 SPRAM Interface Cycle Timing (Continued)

Signal Name Port Dir.

Typical
Timing,
as % of

min.
cycle Validity relative to strobes/stalls
62 MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.



6.2 SPRAM Overview

 tag
rmine
are can

 allowing
ultiple

nore the
ly allow
as been
 the

 a
eration

heable.

ferences
. The
intended

RAM

M to

stall
ly hold

d on
,
derive
external

ine will

t held
or data
6.2.5 Tag Reads and Writes

The interface allows for “tag” values to be read and written. This capability is not used in normal operation. The
values are read/written by the CACHE instruction. This can optionally provide a mechanism for software to dete
the SPRAM configuration and change it. The reference design shows one possible use for this interface - softw
probe the SPRAM to determine the base address and whether it is enabled. These values are also write-able,
software to dynamically configure the SPRAM parameters. A more complex SPRAM could use tag values at m
indexes to encode even more configuration information.

6.2.6 Uncacheable References to SPRAM

Normally, only cacheable addresses can be serviced by the caches on a 4KE core; uncacheable references ig
cache data and go directly to the EC bus interface. The I-side SPRAM interface has been enhanced to optional
uncacheable references to occur to the ISPRAM. This feature enables booting directly from an ISPRAM that h
pre-loaded with the boot sequence (booting always begins in an uncacheable region of memory, as dictated by
MIPS32™ Architecture).

The uncacheable access is handled by essentially providing an extra physical address bit to the ISPRAM, via
ISP_DataTagValue[1]. When high, this bit indicates that the reference is uncacheable, while a low value denotes
cacheable address. An ISPRAM implementation may choose to use this additional information to qualify the gen
of ISP_Hit as desired.

The uncacheable support only applies to the ISPRAM, and references to the D-side SPRAM must always be cac
The DSPRAM interface does not contain the “extra” physical address bit on theDSP_TagCmpValue bus. Because the
cacheability information may not be determined until after the cache/SPRAM access has started, uncacheable re
will still be presented to the DSPRAM, but the data will not be used and an external bus request will be initiated
DSPRAM does not need to directly support uncacheable references, since software can ensure that references
for the DSPRAM are always specified within a cacheable region of memory.

6.2.7 Backstalling the SPRAM interface

The normal cache interface has fixed single-cycle timing. Both the I- and D-side SPRAM interfaces allow the SP
to backstall the core if it is busy, via assertion of the{I,D}SP_Stall signal. This mechanism may be used to support
multi-cycle timing on the SPRAM interface. For example, the backstall mechanism could allow a single-port SRA
arbitrate between the core access and an external interface.

The following considerations should be noted when using the backstalling capability:

• When{I,D}SP_Stall is asserted, the{I,D}SP_Hit signal is ignored by the core.

• The{I,D}SP_Stallsignal is a timing-critical input to the core. Care should be taken when creating the{I,D}SP_Stall
signal, as it feeds into the main pipeline stall logic and must be valid approximately halfway into the cycle. The
signal is also used asynchronously by the core to prevent the next access from occurring, and to conditional
some interface signals valid from the prior request. For these reasons, the{I,D}SP_Stall timing is generally more
critical than{I,D}SP_Hit. In low-frequency applications, the stall signal may be generated combinationally, base
the physical address presented on theDSP_TagCmpValueor ISP_DataTagValuebuses; for timing reasons, however
this is not recommended when maximum core frequency is desired. For max. frequency, it is recommended to
the stall signal from the strobes and index address asserted in the previous cycle, as well as the fact that some
device is using the SPRAM array in the current cycle.

• If {I,D}SP_Stall is asserted for an address that hits in the cache, the cache hit is preserved but the core pipel
be needlessly stalled as long as{I,D}SP_Stall is asserted.

• Refer toTable 6-1for a description of how core outputs behave when stall is asserted. The strobe signals are no
asserted by the core during a stall. The address and write values are held valid during a stall, for the related tag
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port that is active. For example, if a read transaction is occurring on the tag port but the data port is idle, then
address and/or write value associated with the tag port will be held valid during a stall, but the addresses or 
value on the data port is “don’t care” data and may change during the stall sequence.

6.2.8 Access Granularity

The widths of the data bus for read and write requests to SPRAM are shown inTable 6-2. A read always returns a word
(32 bits) of data. The core internally handles any alignment necessary for sub-word read requests, like byte loa
MIPS16 instruction fetches.

Writes to ISPRAM are always a full word. The maximum width of DSPRAM writes is a word, but one, two, or th
bytes can be written as well. The byte lanes to be written to DSPRAM are controlled by theDSP_DataWrMask[3:0]
bus, as shown inTable 6-3; when a bit inDSP_DataWrMask is high, the corresponding byte fromDSP_DataWrValue
should be written to the array.

6.2.9 Unified I/D SPRAM

Separate interfaces are provided from the core to I- and D-side SPRAM. It is possible to create a shared I/D SPR
desired. A unified SPRAM could allow a system to dynamically share the same memory array between the nee
instruction and data, as compared to the build-time partitioning which must be done for the separate Harvard-s
interfaces.

If a unified SPRAM is desired, the existing I and D SPRAM interfaces on the core would need to be brought in
common external block, as illustrated inFigure 6-2. Since I and D requests can occur in the same cycle, a method
handle simultaneous requests will be required. A dual-ported memory could be used to handle simultaneous I/
requests. With a single-ported memory, the backstalling mechanism described previously is one way the I/D
prioritization could be achieved.

Table 6-2 Read and Write Width for SPRAM Arrays

Array
Max Read Width

(bits)
Min Read Width

(bits)
Max Write Width

(bits)
Write Granularity

(bits)

ISPRAM 32 32 32 32

DSPRAM 32 32 32 8

Table 6-3 Byte Control for DSPRAM Writes

DSP_DataWrMask
bit asserted

DSP_DataWrValue
bits to be written

[0] [7:0]

[1] [15:8]

[2] [23:16]

[3] [31:24]
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Figure 6-2 Unified I/D SPRAM Block Diagram

6.2.10 SPRAM considerations with MIPS16

If SPRAM is used in conjunction with the MIPS16 capabilities of the 4KE core, a new twist must be considered. MI
includes support for PC-relative loads, in which a data address reads the instruction stream (typically to read co
intermixed with the instruction text segment). For a normal cache-based processor core, there is always backing
memory which is used to service cache misses. If a PC-relative load misses in the D-cache, it will be filled from s
memory. Both the I-cache and D-cache could contain copies of the “same” location, but this is generally ok sin
PC-relative loads are used to access constants located in the instruction memory and are not normally written.

If an ISPRAM is present, however, an issue can arise with servicing the D-side PC-relative load if there is no b
memory in the system. The core itself does not handle this situation, so it will need to be dealt with by the syst
hardware and/or software, if required.

If a unified I/D SPRAM is employed, then no action will be required since all instruction and data values are alr
located in the same array. For separate ISPRAM and DSPRAM arrays, the exact method to handle the PC-relativ
will depend on the system. In some cases, the compiler might have the ability to separate text and constant segm
the code might be loaded into ISPRAM and constants could be loaded into DSPRAM when the arrays are initia

If the constants are really located in the ISPRAM array, then when a PC-relative load is presented to the DSPRA
DSPRAM block will need to detect the address range(s) where PC-relative load is held, backstall the DSPRAM
interface, divert the DSPRAM reference to the ISPRAM (or elsewhere in the system) to get the constant data, an
return the data to the core.

6.2.11 Restartability of SPRAM accesses

The location of the SPRAM interface within the pipeline has some implications related to events which may ca
transaction to be replayed. Exceptions that occur late in the pipeline, after the SPRAM access has already occur
cause the instruction which caused the access to be killed and possibly re-executed at a later point in time, depen
the exception handler. Examples of such exceptions include interrupts, bus errors, and EJTAG or Watch break
These exception are detected after the SPRAM access has occurred, but the exception PC will point to the ins
which caused the access, or perhaps even a preceding instruction. Hence, the SPRAM accesses will generally n
restartable, so the SPRAM device must be capable of re-playing the read or write after the exception has been pro
Care must be taken for memory-mapped devices which may be attached to the SPRAM interface, so they can ha
potential replay of a read or write access.

4KE core

Unifed
I/D

SPRAM

DSPRAM i/f

ISPRAM i/f

EC i/f
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6.2.12 Connecting I/O Devices to the Scratchpad Interface

In addition to, or perhaps instead of, an SRAM array, it is possible to connect I/O devices to the SPRAM interfa
Connecting I/O devices to the cache interface allows low latency, high throughput access to critical I/O devices
system. To accomplish this, the implementer must ensure that the behavior of the I/O devices meets the same
requirements as the SPRAM. I/O devices connected to the SPRAM port must be capable of re-playing reads an
with no adverse effects, as described in Section 6.2.11, "Restartability of SPRAM accesses".

6.2.13 Null connection to unused SPRAM interface

The presence of ISPRAM and/or DSPRAM interfaces must be chosen when the core is built. Even if the SPRA
interface is present, there need not be a device connected to it. If the interface is not to be used, then the{I,D}SP_Present
input signal to the core should be driven low. All other input signals to the core for the unused SPRAM interface s
also be tied low, to avoid floating inputs. All output signals from the core related to the unused SPRAM interface c
left unconnected.

6.3 SPRAM Interface Transactions

Strobe signals on the SPRAM interface determine the type of transaction that is active. In general, there are inde
interfaces for “tag” accesses and “data” accesses. For some transaction types, both the tag and data interface
to process the same request. In other cases, the tag and data interfaces may process unrelated requests.

Table 6-4 shows the type of transaction indicated by the tag/data read/write strobe signals. All four strobes are 
on the DSPRAM interface. On the ISPRAM interface, there are three strobes: a single read strobe and separate
write strobes. Note that some strobe combinations never occur.

Table 6-4 SPRAM Transaction Types

DataWrStr TagWrStr TagRdStr DataRdStr Transaction Type

0 0 0 0 No access

X 0 0 1 Not possible

0 0 1 0 DSPRAM: Store address lookup with no data write

0 0 1 1

ISPRAM: Instruction fetch or CACHE read (fill or index load
tag)

DSPRAM: Load or CACHE read (index load tag)

0 1 0 0 CACHE write (index store tag)

0 1 0 1 Not possible

0 1 1 X Not possible

1 0 0 0
ISPRAM: CACHE write (index store data)

DSPRAM: Idle cycle store or CACHE write (index store data)

1 0 1 0
ISPRAM: Not possible

DSPRAM: Store lookup with store data write

1 0 1 1 Not possible

1 1 X X Not possible
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This remainder of this section contains timing diagrams for typical read and write transactions to SPRAM. Sinc
DSPRAM interface is a superset of the ISPRAM interface, the diagrams only depict DSPRAM transactions. Th
relationship of interface signals which are only present on the DSPRAM interface to the ISPRAM is discussed in S
6.6, "Using the same design for ISPRAM and DSPRAM" on page 75.

6.3.1 Single Read

Figure 6-3 shows the timing diagram for a single SPRAM read. This scenario can occur for the following conditi

• data load to DSPRAM

• instruction fetch to ISPRAM

• CACHE read (index load tag to either SPRAM or a fill lookup to ISPRAM)

• store address lookup to DSPRAM, when no previous store data is pending (in this caseDSP_TagRdStr will assert,
butDSP_DataRdStr will not)

The 4KE core initiates the read by asserting read strobe signals (DSP_TagRdStr, DSP_DataRdStr) and by driving a valid
index on the address busses (DSP_TagAddr, DSP_DataAddr) during cycle 1. Typically, these signals are used by
synchronous logic in the external DSPRAM block to perform a read on the rising edge of cycle 2. Also during cy
the physical address for tag comparison (DSP_TagCmpValue) is driven by the core.

The external DSPRAM block uses the strobe and address information driven by the core to determine that the
is indeed within the range mapped by the SPRAM array, and that the requested read data can be returned imm
Thus, the external logic assertsDSP_Hit and deassertsDSP_Stallin cycle 2, while driving the read data on bus
DSP_DataRdValue. For the minimum read response, the hit and stall signals must be signalled combinationally 
performing a tag comparison on the physical address provided on busDSP_TagCmpValue. The external logic might also
return tag read data associated with a CACHE instruction request, on busDSP_TagRdValue, if that is relevant for the
SPRAM implementation.
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Figure 6-3 Single DSPRAM Read

6.3.2 Single Multi-Cycle Read

Figure 6-4shows the timing diagram for a single DSPRAM multi-cycle read, and illustrates the back-stalling capa
of the interface. This is similar to the single-cycle read case described in Section 6.3.1, "Single Read", but now
external SPRAM logic was unable to immediately service the read request.

The read request is initiated by the core in cycle 1 by driving read strobes and index addresses. In cycle 2, howe
SPRAM access cannot be completed for some reason, so the external logic responds by assertingDSP_Stall. The value
driven onDSP_Hitis ignored by the core whenever stall is asserted. The stall indication is used combinationally b
core to hold the index addresses valid for the original request. In this case, stall is asserted for two cycles, and is
deasserted in cycle 4. During cycle 4, the SPRAM array access proceeds, and external logic asserts hit and dr
requested read data.

Note that while stall is asserted, the index and tag addresses are held by the core, but the strobe signals are not.
will never assert another strobe request while stall is asserted.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Valid

Valid
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Figure 6-4 Single Multi-Cycle DSPRAM Read

6.3.3 Single Write

Figure 6-3shows the timing diagram for a single DSPRAM write. OnlyDSP_DataWrStris active. This is the simplest
write scenario and can occur when store data is sent to the DSPRAM during an idle cycle when no other loads o
are being processed. This case can also occur when a CACHE index store data operation is presented to the 
array.

The core initiates the write in cycle 1, by driving the write strobe (DSP_DataWrStr), data index address
(DSP_DataAddr), write data (DSP_DataWrValue), and byte mask (DSP_DataWrMask). Since the tag strobes are not
active, the tag index address and tag physical address are not valid.

The SPRAM logic is able to complete the write during cycle 2, so the stall signal (DSP_Stall) is deasserted and the
transaction completes. Note that the hit signal (DSP_Hit) is not looked at by the core, since the tag strobe signals a
inactive.

For an idle cycle store, the tag address transaction occurred at some earlier point. The core tracks the fact tha
previous tag lookup was a DSPRAM hit, and presents only the corresponding index address and store data to
DSPRAM for the transaction here.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid

Valid

Valid
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Figure 6-5 Single DSPRAM Write

6.3.4 Single Multi-Cycle Write

Figure 6-6shows the timing diagram for a single DSPRAM multi-cycle write, and illustrates the back-stalling capab
of the interface. This is similar to the single-cycle write case described in Section 6.3.3, "Single Write", but now
external SPRAM logic was unable to immediately service the write request.

The core initiates the write in cycle 1, by driving the data write strobe, index address, store data, and byte mask.
external DSPRAM logic is unable to process the write during cycle 2, so it responds by asserting DSP_Stall, in th
for two cycles. The core holds the address, store data, and byte mask valid while the stall signal is asserted. Durin
4, the write could proceed, and the external logic then deasserts stall to complete the write transaction.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid
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Figure 6-6 Single Multi-Cycle DSPRAM Write

6.3.5 Simultaneous Tag Read and Data Write

Figure 6-7 presents a transaction in which a write to the data interface occurs at the same time as a read to the
interface. This is an extension to the data write-only transaction discussed in Section 6.3.3, "Single Write", but 
typical occurrence to DSPRAM, when an address transaction occurs for the current store instruction, while sto
from a previous DSPRAM hit is simultaneously presented to the data array. This situation never occurs to ISPR

The core initiates the transaction in cycle 1, by asserting the tag read strobe (DSP_TagRdStr) and data write strobe
(DSP_DataWrStr). On the data interface, the data index address, data value, and byte mask, all corresponding to th
store which hit in the DSPRAM, are also driven in cycle 1. On the tag interface, tag index address for a new sto
driven in cycle 1, while the physical address for that store is driven in cycle 2.

The external DSPRAM logic is able to process both the tag and data transactions during cycle 2, so it asserts 
(DSP_Hit) based on a successful physical address comparison, and deasserts stall (DSP_Stall), thereby completing both
the tag and data portions of the transaction. The tag read value (DSP_TagRdValue) is also shown as being driven valid
in cycle 2. This value is probably not relevant for this type of store transaction, but the external logic may choos
always drive this bus in response to the tag read strobe for simplicity.

Note that the interface does not permit the tag read and data write transactions to be completed independently, sin
is a single stall signal. The external DSPRAM block must complete both operations in cycle 2, or assert stall to co
them in a later cycle.

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

Valid

Valid

Valid
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Figure 6-7 Combined DSPRAM Tag Read and Data Write

6.3.6 Back-to-Back Reads

The SPRAM interface is fully pipelined, and any combination of the previously introduced single-transactions c
combined in consecutive cycles. The core will never initiate a new transaction whenever stall is asserted, howe

Figure 6-8 shows two back-to-back read transactions. Each individual transaction looks like the single-cycle rea
introduced in Section 6.3.1, "Single Read".

Clock #

clk

DSP_DataRdStr

DSP_DataAddr[19:2]

DSP_Hit

1 2 3 4 5 6 7 8

DSP_DataWrStr

DSP_DataWrMask[3:0]

DSP_DataWrValue[31:0]

DSP_DataRdValue[31:0]

DSP_Stall

DSP_TagCmpValue[23:0]

DSP_TagWrStr

DSP_TagRdStr

DSP_TagAddr[19:4]

DSP_TagRdValue[23:0]

DA1

DV1

DM1

TA2

TC2

TV2
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6.3.7 Read-Write-Read Sequence

Figure 6-9 depicts a three transaction sequence, consisting of a single-cycle read, followed by a data store (wit
simultaneous tag read) that is stalled for two cycles, and finally followed by another single-cycle read.

The first and last reads are like single-cycle read described in Section 6.3.1, "Single Read". The data store is deriv
the single-cycle transaction introduced in Section 6.3.5, "Simultaneous Tag Read and Data Write", but the com
has been stalled for two additional cycles.
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Figure 6-9 Read-Write-Read

6.4 External Access to Scratchpad Memory

A system design may desire access to the SPRAM by a source external to the core, referred to as abackdoor. Creating
such an external access path quickly becomes a system architecture issue which is beyond the scope of this d
but here are a few methods which could be considered:

1. Use the backstalling capability of the SPRAM interface to allow arbitration between the core and backdoor
single-ported SRAM, as shown inFigure 6-10. The arbitration logic can backstall the core by asserting the
{I,D}SP_Stall signal when the core attempts an access at the same time as an external device.

2. Use a true dual-ported SRAM. The core can use one port, and the backdoor can use the other. Software on
ensure that the same address is not written on both ports at the same time.

3. Split the SPRAM into two or more banks. Under software control, the backdoor could then gain access to 
bank, while the core accesses the other(s). This method might also be combined with the backstalling cap
but stalls should be less frequent.
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Figure 6-10 External Access to Single-ported SPRAM

6.5 SPRAM Initialization

If the scratchpad is really a RAM-based structure, then it must be initialized with valid data before it can be used.
are several standard mechanisms to handle this. One or more of these options should be available depending
system.

• CACHE fill instruction: In general, executing the Fill version of the CACHE instruction forces a refill of the cac
from main memory. If the reference hits in the cache, the fill will go to the same way to avoid a conflict. This
mechanism works for the SPRAM as well: if the reference hits in the SPRAM, the cache controller will try to 
the SPRAM way. The CACHE Fill instruction is only available for the I-cache (and thus ISPRAM) and it requi
backing memory at the SPRAM address, since the fill will be serviced via the EC interface.

• Stores: For DSPRAM, the array can be initialized with normal store instructions that hit in the SPRAM region

• CACHE Index Store Data instruction: Indexed cache operations can be forced to go to the SPRAM by setting
SPRbit in the Coprocessor0ErrCtl register. When this bit is set, it is possible to use the Index Store Data flavor of
CACHE instruction to move data from theDataLoCop0 register into the SPRAM. This mechanism does not requ
any backing memory and can even be used to load the SPRAM from an EJTAG probe for early system bringu
method can be used for either the ISPRAM or DSPRAM, although using stores to initialize DSPRAM is much
efficient. It is recommended that all SPRAM implementations support this method in addition to any other loa
mechanisms.

• Backdoor port: If there is an external DMA port into the SPRAM, then the system can load data directly into t
array. This can be done while holding the core in reset or by backstalling any core references to the SPRAM
would work for either an I-side or D-side SPRAM.

6.6 Using the same design for ISPRAM and DSPRAM

In order to minimize the number of pins on the external interface, the I-side and D-side SPRAM interfaces are 
identical. The I-side is more constrained in the type of possible writes, so several of the busses are shared. Fo
reuse considerations, it may be desirable to only develop one SPRAM module and use it on both ports. The co
module should have all of the ports for the DSPRAM.Table 6-5 shows how ISPRAM signals should be connected to
appropriate DSPRAM ports.

Table 6-5 ISPRAM Connection to DSPRAM Ports

DSPRAM port ISPRAM port Description

DSP_DataAddr ISP_Addr[19:2]
The I-side Tag and Data ports share the same address.

DSP_TagAddr ISP_Addr[19:4]

From 4KE core

arbitration
logic

External source SPRAM
array

read data
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6.7 Multiple SPRAM regions

It is possible to map multiple SPRAM regions into a single SPRAM block. Note, however, that the entire array is ind
with a virtual address. This places constraints on the virtual addresses associated with the given regions. This 
turn place constraints on the physical address of the region.

Figure 6-11shows 3 regions within a single memory array. Several of the bits of the VA are fixed for each region.Figure
6-12 shows 2 regions built in separate arrays. In this case, only one bit of the virtual address is fixed. For region
VA<11> can be either 0 or 1. Using PA<11> in the hit determination will select one of the two spots and leave a h
the other one.

DSP_TagRdStr ISP_RdStr
Both Tag and Data are always read at the same time on the I-side.

DSP_DataRdStr ISP_RdStr

DSP_TagCmpValue ISP_DataTagValue[23:0]This bus is shared on the I-side because only one of the following actions ca
occur in any given cycle: Data write, tag write, or tag compareDSP_DataWrValue ISP_DataTagValue[31:0]

DSP_DataWrMask 4’hf On an I-side data write, all 4 bytes of the given word will always be written
at the same time.

Table 6-5 ISPRAM Connection to DSPRAM Ports

DSPRAM port ISPRAM port Description
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Figure 6-11 Multiple SPRAM regions

Figure 6-12 Multiple SPRAM regions in separate arrays

6.8 Implementation recommendations

The SPRAM interface provides a great deal of flexibility. That flexibility can make it difficult for standard toolcha
and debuggers to work with the SPRAM. By adhering to a few standard features, that interface can be made simp
may have better tool support.

Virtual Index
<12:2>

Region0 - 2K

Region 1- 2K

Region 2- 4K

Region 0 always accessed with
VA<12:11> = 00b
Region 1- VA<12:11> = 01b
Region 2- VA<12> = 1b

Region 0- 2K Region 1- 4K

Virtual Index
<12>

Virtual Index
<11:2>

Virtual Index
<10:2>

Region 0 - VA<12> = 0b
Region 1 - VA<12> = 1b

Region0 ?- 2K

Region 0?- 2K

Region 1- 4K
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6.8.1 Software visible configuration information

Using the CACHE instruction, it is possible to read or write the ‘tag’ value associated with the SPRAM. To prov
common software interface, it is recommended that all SPRAM implementations provide some standard config
information via this mechanism.

If the SPR bit in the ErrCtl register is set, an Index Load Tag CACHE instruction will read the SPRAM tag and plac
contents in the TagLo register. The index value (bits 19:4) will be passed to the SPRAM block which is used to
between different configuration registers. These are the recommended read values that will allow identification
SPRAM consisting of one or more blocks of memory. Additional configuration information can be stored in unu
fields or unused indices. If there is a hole in the virtual address space in the SPRAM, other discontiguous regions
have their own ID registers and be marked as not valid/enabled.

The tag read value for the first index in a region should be the following:
[23:2] PA - bits [31:10] of base address for memory region
[1] Lock - Indicate whether an ISPRAM block can service uncacheable fetches

unused for DSPRAM
[0] Valid - memory region is enabled

The tag read value for the second index in a region should be:
[23:2] PA - size of memory region (number of 16B lines)
[1:0] Lock/Valid - unused

Using the size information, software can determine the first index associated with the following memory region
chain can be followed in a linked list fashion until all memory regions have been identified. The end of the list c
indicated by one of three values in the next set of registers.

1. Size = 0

2. PA/Size = PA/Size of previous region

3. PA/Size = PA/Size of first region

Method one is preferable, but the second and third methods can be used to reduce the amount of hardware req
generation of the tag read values.

Here’s an example showing the tag registers associated with 3 discontiguous SPRAM regions:
16KB region at PA: 0x0000_0000
16KB region at PA: 0x0080_0000
64KB region at PA: 0x0001_0000

Tag 0 - {22’h0, 1’h0, 1’h1}
Tag 1 - {22’h400, 2’h0}
Tag 1024 - {22’h2000, 1’h0, 1’h1}
Tag 1025 - {22’h400, 2’h0}
Tag 2048 - {22’h40, 1’h0, 1’h1}
Tag 2049 - {22’h1000, 2’h0}
Tag 6144 - {24’h0}
Tag 6145 - {24’h0}

Note that these bits will be remapped to the format of the TagLo register:

TagLo  Register Format
31 16 15 10 9 8 7 6 5 4 0

PA 0 V 0 L 0
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6.8.2 Region sizes

Note that the encoding described in Section 6.8.1, "Software visible configuration information" imposes restrictio
the size of memory regions within the SPRAM. The minimum size is 32B and the size must be a multiple of 16

6.8.3 Unique addresses

In order to provide a simple programming interface, it is recommended that if ISPRAM and DSPRAM are
simultaneously present, they should have unique addresses and do not overlap. If there is backing memory for
SPRAM regions, the same address can exist in both SPRAM and main memory, but otherwise it should not.

6.8.4 Support ISPRAM writes

In a very simple system, the data write port on the ISPRAM seems extraneous. This write port can, however, be u
a CACHE Index Store Data instruction to manipulate the contents of the ISPRAM. One case where this could be
is when debug software inserts breakpoints in the instruction stream.

6.8.5 Virtual Aliasing

When placing SPRAMs in an address region that is mapped via the TLB, there is a potential problem with virtu
aliasing. The SPRAM is virtually indexed and physically tagged. A virtual address is used to index into the SPRAM
the following cycle, a physical address is presented for the hit determination.

Virtual aliasing is possible. This is the condition where one physical address can exist in different memory loca
it is accessed with different virtual addresses. This can be avoided by using a page size the same size or larger
SPRAM, or by forcing a 1-1 VA-PA translation on bits used to index the SPRAM.

6.9 Reference Design

A simple example of scratchpad control logic is shown in Section 6.9.1, "Example SPRAM Block". The example m
supports a very basic scratchpad implementation that could be used for either ISPRAM or DSPRAM. It is config
within certain constraints:

• SPRAM size can range from 1KByte to 1MByte in powers of 2.

• A base physical address for the SPRAM location in physical memory needs to be specified. The address ran
be naturally aligned (i.e. a 64KB SPRAM’s base address must be on a 64KB boundary).

• The size and address range are incorporated into the SPRAM model via‘defines within the module.

• The array always returns data in a single cycle and does not utilize the backstalling capabilities of the genera
SPRAM interface.

• Booting from the ISPRAM is not supported; hits only occur on cacheable references.

This is intended to be a very basic example of how a SPRAM block might be implemented. If this limited capabil
sufficient, it is possible to use this code by instantiating a real SRAM and modifying the constants.

Figure 6-13 on page 82 shows the simple hookup of SPRAM and the hit logic in this example. As shown, theHit logic
is very simple. This is the reason for the limitations on size and base address. No real tag array exists, but the 
address, masked with the SPRAM index size, is compared to the physical address to determine a hit and generatHit
signal.
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6.9.1 Example SPRAM Block

Verilog code for a possible SPRAM implementation is shown below:

module m4k_dspram(TagAddr,TagRdStr,TagWrStr,TagCmpValue,DataAddr,
DataWrValue,DataRdStr,DataWrStr,DataWrMask,Clk,Reset,Present,
DataRdValue,TagRdValue,Hit,Stall);

`define M4K_DSPRAM_DEPTH 13
`define M4K_DSPRAM_SIZE 32*1024
`define M4K_DSPRAM_BASE 32’h00058000

parameter DEPTH = `M4K_DSPRAM_DEPTH;     // Bits of index needed for Array
parameter SIZE = `M4K_DSPRAM_SIZE;       // Size of array in bytes
parameter BASE_PA = `M4K_DSPRAM_BASE;    // Base Physical Address
parameter TAG_BIT_BOUND = 2 + DEPTH; /* Lowest bit of PA that is part of tag */

input [19:4]TagAddr;// Index into tag array
input TagRdStr;// Tag Read Strobe
input TagWrStr;// Tag Write Strobe
input [23:0] TagCmpValue;    // Data for tag compare {PA[31:10], 2’b0}

input [19:2]DataAddr;       // Index into data array
input [31:0]DataWrValue;// Data in
input DataRdStr;// Data Read Strobe
input DataWrStr;// Data Write Strobe
input [3:0]DataWrMask;

input Clk; // Clock
input Reset;          // Reset

/* Outputs */
output Present;        // Static output indicating spram is present
output [31:0]DataRdValue;// Read data
output [23:0]TagRdValue;// read tag
output Hit;        // This reference hit and was valid
output Stall;          // Read has not completed

wire spram_enable_cond, Stall, Present, Hit, spram_enable, spram_enable_cnxt;
wire [31:10] spram_base_boot, spram_base_cnxt, zeros, ones, spram_base, tag_mask;
wire [31:0] Size, spram_base32;
wire [23:0] TagRdValue;
wire spram_base_cond, in_spram_range, TagAddr4_Reg;

assign Present = 1’b1;

/* SRAM Array: */
sram_array sram_array (

    .clk(Clk),
    .line_idx(DataAddr[(2+DEPTH)-1:2]),
    .rd_str(DataRdStr),
    .wr_str(DataWrStr),
    .wr_mask(DataWrMask),
    .wr_data(DataWrValue),
    .rd_data(DataRdValue)
    );

/* spram_enable: Master enable signal for the SPRAM.  Writing to
 * index 0 of the ‘tag-array’ with teh valid bit set will enable SPRAM
 */
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cregister #(1) _spram_enable(spram_enable,spram_enable_cond, Clk,
spram_enable_cnxt);

assign spram_enable_cond = Reset || ( TagWrStr && (TagAddr[11:4] == 8’d0));
assign spram_enable_cnxt = !Reset && ( TagCmpValue[0] == 1’b1 );

/* tag_mask: Masking bits for Tag-compare address
 * The masking is based on the size of the SPRAM, rounded up to the
 * nesrest power of 2 size.
 */
assign ones [31:10] = {22{1’b1}};
assign zeros [31:10] = 22’b0;

assign tag_mask [31:10] = { ones[31:TAG_BIT_BOUND], zeros[TAG_BIT_BOUND-1:10]};

/* Two options for configuring SPRAM base address:
 * Hard code it -
 */
//   spram_base32 [31:0] = BASE_PA;
//   spram_base [31:10] = spram_base32[31:10] & tag_mask;

/* Programmable -
 * Offer ability to configure it via Idx Store Tag cacheops
 */
assign spram_base32 [31:0] = BASE_PA;
assign spram_base_boot [31:10] = spram_base32[31:10];
assign spram_base_cond = Reset || ( TagWrStr && (TagAddr[11:4] == 8’d1));
assign spram_base_cnxt [31:10] = Reset ? (spram_base_boot & tag_mask) :

  (TagCmpValue[23:2] & tag_mask);
cregister #(22) _spram_base_31_10_(spram_base[31:10],spram_base_cond, Clk,

spram_base_cnxt);

/* Pseudo Tag-array and Decode Logic */

// SPRAM Hit signal
// TagCmpValue[1] is used on I-side to indicate uncached reference
assign in_spram_range = ~|((TagCmpValue[23:2] ^ spram_base) & (tag_mask));
assign Hit = in_spram_range && spram_enable && !TagCmpValue[1];

/* TagRdValue: Tag Return data
 * TagEntry 0 - Base Address
 * TagEntry 1 - Size
 * Software can probe ‘tags’ to determine size/location
 */
cregister #(1) _TagAddr4_Reg(TagAddr4_Reg,Clk, TagAddr[4]);

assign Size [31:0] = `M4K_DSPRAM_SIZE >> 4;

assign TagRdValue [23:0] = {TagAddr4_Reg ? Size[21:0] : spram_base, 1’b1 /* Lock
*/, spram_enable /*Valid*/};

assign Stall = 1’b0;

endmodule

module cregister(q, cond, clk, d)
parameter WIDTH = 1;
output [WIDTH-1:0] q;
reg [WIDTH-1:0]    q;
input    clk;
input    cond;
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input [WIDTH-1:0]  d;

always @(posedge clk)
if (cond)

q <= #1 d;

endmodule

Figure 6-13 SPRAM Hookup and Hit Logic inm4k_dspram module

The fixed bit of logic “1” (not shown inFigure 6-13, but in the sample code) and the usage ofspram_enable on
TagRdValue[1:0] represents the lock bit and valid bit. The SPRAM behaves like a locked entry. All locations in th
SPRAM are per definition always valid, thus the valid bit for each line is always set when the SPRAM is enable

In them4k_dspram  module, thespram_enable register is reset to zero. It must be set to enable the SPRAM. Spec
software boot-code is required to enable the SPRAM before any attempt to use it is made. To set thespram_enable bit
in them4k_dspram module, the user must write a tag-entry with the valid bit set, using the CACHE instruction, to in
zero of the “virtual” tag entry for the SPRAM.

A register is used to hold thespram_base base address. This register is reset to the value defined at the top of the
but can be overwritten by writing to index 0 of the “virtual” tag entry for the SPRAM. This makes the base addr
programmable by software, which may prove useful for a more general implementation. Note that special softwa
code is required to place the SPRAM in the right address space, before any attempt to use it is made.

Software can probe the tag entries for the SPRAM to learn how it is configured. Using the CACHE Index Load 
instruction, the tag values can be read. When index 0 of the tag array is read, the base physical address of the
is returned and placed intoTagLo. When index 1 of the tag array is read, the size (in number of 16B lines) is retur

Scratch Pad
Ram

DataAddr[19:2]

DataRdValue[31:0]

DataRdStr

DataWrStr

DataWrMask[3:0]

DataWrValue[31:0]

clk

TagRdStr

Hit

spram_enable

TagCmpValue[23:1]

sp_hit Logic

{spram_base[31:10],
uncached}

{tag_mask[31:10],1’b1}

TagRdValue[23:0]
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Chapter 7

Performance Monitoring Interface

This chapter describes the Performance Monitoring(PM) interface, which is present on a MIPS32 4KE™ processo
This interface allows a system designer to implement performance counters which can be used for profiling softw
hardware performance.

The specific pins on the interface are prefixed withPM_, and were introduced inChapter 2, “Signal Description,” on
page 3. This chapter includes further details about the use of the PM interface, and contains the following major se

• Section 7.1, "PM Interface versus Performance Counters"

• Section 7.2, "Interface Protocol"

7.1 PM Interface versus Performance Counters

The PM interface is a replacement for the Performance Counters present on some other MIPS processors. Perf
counters are typically configurable to allow the counting of a variety of processor events. The counters are incl
Coprocessor 0 and can be read and configured by kernel routines. Monitoring software can periodically read th
registers, or they can be configured to signal an interrupt when the counter overflows. Frequently, multiple count
implemented so that the relative frequency of different events can be compared over a large sample set - for exam
ratio of D-cache hits to misses, or the ratio of micro TLB misses to instructions completed.

The PM interface was implemented instead of Performance Counters for a number of reasons:

• The area associated with the counters can be avoided if counters are not desired.

• The integrator has more flexibility for choosing the number and type of counters, as well as system access to

• The added pin bandwidth required is not a significant cost on a core (assuming that any counters will be implem
on-chip).

More general information about Performance Counters can be found in the MIPS32 architecture document:MIPS32™
Architecture For Programmers Volume III: The MIPS32™ Privileged Resource Architecture[6]. Another reference is
the User’s Manual of a processor implementing Performance Counters such as the MIPS64 5Kc™ Processor Core
Software User’s Manual [7].

7.2 Interface Protocol

The PM interface is rather simple. Each of the pins, when asserted high, indicates that a particular event has o
within the core. A pin will be asserted for one cycle for each event. For example, an instruction cache miss will
PM_ICacheMiss to be asserted for one cycle even if the miss is stalling the core for many cycles. Signals will on
asserted once for each instruction that is executed. Counting a specific event simply requires adding an increm
the desired width that updates once per cycle when that signal is high.

It is important to note that the PM signals do not travel down the instruction pipeline This has two implications:

1. The signals associated with a single instruction may come out in different cycles depending on which pipe
they were detected in.

2. Events from early stages of the pipeline will be reported even if the instruction takes an exception.
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7.2.1 Events

The following events are available on the PM interface, independently for the instruction and data sides of the 

• Cache hit and miss. One of these signals asserts whenever a cacheable access occurs. Uncacheable acces
assert these signals.

• Micro-TLB hit and miss. One of these signals asserts whenever a valid micro-TLB access occurs to a mappe
address. They will never assert for unmapped addresses, or on cores with no TLB.

Additionally, these general events are also available:

• Instruction complete indication. Asserts whenever an instruction completes at the end of the pipeline. Instruc
which are killed due to exceptions will not cause an assertion of this signal, but could result in assertion of th
PM signals since they are generally reported earlier in the pipeline.

• JTLB hit and miss. One of these signals asserts whenever a valid JTLB access occurs. The DTLB and JTLB
always accessed in parallel, so a DTLB hit will always produce an assertion of the JTLB hit signal as well. W
either the I or D micro-TLBs miss, the JTLB will be accessed and result in either a JTLB hit or miss assertion
cores with no TLB, these signals will never assert.

• Write buffer merge or no merge. One of these signals asserts whenever a store is presented to the merging 
buffer.

For the hit/miss style PM signals, the hit rate can be expressed as follows, based on counts from the coupled h
events:

(No. of hits) / (No. of hits + No. of misses)

Similarly, the miss rate can be expressed as:
(No. of misses) / (No. of hits + No. of misses)

The JTLB ratios may be more meaningful if ITLB hits are included in the sum of events, since an ITLB hit implies
there was a mapped address that did not access the JTLB, but would have hit. So the JTLB hit ratio could be expre

(No. of JTLB hits + No. of ITLB hits) / (No. of JTLB hits + No. of JTLB misses +
No. of ITLB hits)

Then the JTLB miss ratio is:
(No. of JTLB misses) / (No. of JTLB hits + No. of JTLB misses + No. of ITLB hits)

Another interesting ratio is events/instruction:
(No. of events) / (No. of instns)

7.2.2 Example Instruction Sequence

Table 7-1 shows several instructions being executed and the corresponding values on the PM interface. A “-” f
value indicates that the value is dependent on instructions not shown in the sequence. The following sequence
instructions are executed in the example:

1. ADD - hits in ITLB, misses in the I-cache

2. SW - hits in ITLB/I-cache and DTLB/JTLB/D-cache, does not merge in WTB

3. LW - hits in ITLB/I-cache, misses in JTLB/DTLB causing an exception

4. SRL - hits in ITLB/I-cache

5. ADD - hits in ITLB, misses in I-cache

6. First instruction of exception handler, hits in I-cache (no ITLB access)
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t the
Note that even though instructions 3-5 are killed by the exception, the PM signals are still asserted for events a
beginning of the pipeline (I-cache/ITLB).

Table 7-1 Performance Monitoring Example

Instn Pipe Stage

Add I I I I E M A W

SW I E M A W

LW - (takes TLBL exc.) I E M M A W

SRL I E E M A W

Add I I I I

Exc. Handler I E M A W

Signal Value

PM_DCacheHit - - - - 0 0 0 0 1 0 0 0 0 0 0 0 -

PM_DCacheMiss - - - - 0 0 0 0 0 0 0 0 0 0 0 0 -

PM_ICacheHit - - 0 0 0 0 1 1 1 0 0 0 0 1 - - -

PM_ICacheMiss - - 1 0 0 0 0 0 0 1 0 0 0 0 - - -

PM_InstnComplete - - - - - - - - 1 1 0 0 0 0 0 0 1

PM_ITLBHit - 1 0 0 0 1 1 1 1 0 0 0 0 - - - -

PM_ITLBMiss - 0 0 0 0 0 0 0 0 0 0 0 0 - - - -

PM_DTLBHit - - - 0 0 0 0 1 0 0 0 0 0 0 0 - -

PM_DTLBMiss - - - 0 0 0 0 0 0 1 0 0 0 0 0 - -

PM_JTLBHit - - - 0 0 0 0 1 0 0 0 0 0 0 0 - -

PM_JTLBMiss - - - 0 0 0 0 0 1 1 0 0 0 0 0 - -

PM_WTBMerge - - - - 0 0 0 0 0 0 0 0 0 0 0 0 -

PM_WTBNoMerge - - - 0 0 0 0 1 0 0 0 0 0 0 0 -
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Chapter 8

VMC Simulation Model

This chapter discusses the simulation models included in a MIPS32™ 4KE™ core release. It contains the follo
section:

• Section 8.1, "Cycle-Exact Simulation Model"

8.1 Cycle-Exact Simulation Model

A VMC model is available if cycle-exact simulation is required. VMC is a tool from Synopsys that compiles RTL
a protected binary executable. This resulting executable can then be linked into a SWIFT R41 compatible RTL sim
to simulate a MIPS32 4KE processor core.

8.1.1 Installing the VMC Model

1. The 4KE VMC model is supported under the Sun Solaris UNIX and x86 RedHat Linux platforms.

2. The 4KE VMC model is a SWIFT R41 compatible model. This model can be loaded into a site-wide R41
LMC_HOME tree or into its own stand-alone LMC_HOME tree. As appropriate, set the LMC_HOME
environment variable to the location where the installation is to reside:

% setenv LMC_HOME <your_install_path>

In a normal MIPS32 4KE soft core installation, for example, a local LMC_HOME location might be set like th
% cd $MIPS_PROJECT
% mkdir vmc_install
% setenv LMC_HOME $MIPS_PROJECT/vmc_install

3. Invoke the admin install tool supplied in the top level of the release package for the VMC model:
% $MIPS_PROJECT/vmc[_sun,_linux]/m4ke_vmc_release/sl_admin.csh

1. A dialog box labeled “Install From...” should pop up.

2. Make sure the text input box points to the package, “m4ke_vmc_release”.

3. Press “Open” to continue.

4. Another dialog box is used to select the models that will be installed. Only one choice is available in thi
release, a model called “m4ke_vmc_model” followed by a version number. Click on that model to bring it
the “Models to Install” window.

5. Click “Continue” to close this dialog box.

6. Another dialog box to select the platforms for this model installation will appear. Each release package
only contain the model for one platform and that check box should be selected. The appropriate simula
packages used under the “EDAV Packages” heading also need to be specified. Both Verilog-XL and
NC-Verilog are covered by the “Cadence Design Systems” push button. Modelsim and VCS have their 
buttons. Multiple EDAV packages can be selected and the packages for all simulators that will be used 
be selected. Push the “Install” button to continue.

7. An “Install complete” message in the main message window is received and then exit from the sl_admi

4. During the installation, a documentation directory will be created at$LMC_HOME/doc. There are pdf files in this
directory structure that contain additional details about the install process, administering and using SmartM
and licensing.
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5. The 4KE VMC model requires a GLOBEtrotter FLEXlm license in order to run. This license can be received
button from MIPS through your IP vendor. For details on how to install the license, see the “Network Licens
chapter of$LMC_HOME/doc/smartmodel/manuals/install.pdf.

6. For Linux installations only: A directory needs to be added to the LD_LIBRARY_PATH to make the VMC mo
work.

• $LMC_HOME/lib/x86_linux.lib/
% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

8.1.2 Verifying the VMC Installation

A utility called swiftcheck is available in the VMC installation to ensure that the model and environment variab
are set up properly. This command must be run before attempting to simulate with the 4KE VMC model. Invocat
as follows:

% $LMC_HOME/bin/swiftcheck m4ke_vmc_model

The fileswiftcheck.out is produced by the command. Check it to verify that there are no errors as reported a
end of the file.

8.1.3 SWIFT Template Generation

In order to instantiate the 4KE VMC model in the RTL simulation environment, a SWIFT template of the 4KE V
model needs to be created, which is then instantiated in the RTL design. This template file provides a conversi
the VMC model to the simulator’s SWIFT interface. The SWIFT template is simulator-specific, so simulator
documentation provides additional details on creating a SWIFT template, including the template in the design.

To create a SWIFT template under Synopsys VCS, the following command can be used:
% vcs -lmc-swift-template m4ke_vmc_model

To generate a SWIFT template for Verilog-XL, NC-Verilog, and ModelSim, a script calledvsg  that is included in the
$LMC_HOME/bin area of the installed VMC area is used (This script is included as part of the Cadence EDAV pac
as described in step 3.6 above). The invocation is:

% $LMC_HOME/bin/vsg -z m4ke_vmc_model

Two example templates are included in the$MIPS_PROJECT/vmc_sun/verification  directory.

8.1.4 Back-Annotating with SDF Timing

This is not supported.

8.1.5 Register Windows

To increase the visibility into the VMC model, a number of core signals are made available via register window
added information can make it easier to determine what the core is doing and help debug any integration/softw
problems. Table 8-1 shows the signals available via register windows.

Table 8-1 Core Signals Visible in VMC model

Name Bits Description

RFn [31:0]
Contents of register n. Entries RF1-RF31 of the register file are available. Entry RF0 is always 0.

Contents of shadow registers sets are not available as windowed signals.
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8.1.5.1 Enabling VMC Window Signals in Synopsys VCS

Enabling the register window signals so they are visible is dependent on the simulator being used. For Synops
the register windows are globally enabled with the following code, which must be included somewhere in the test

initial $swift_window_monitor_on(“<instance_path_to_m4ke_vmc_model>”);

8.1.5.2 Enabling VMC Window Signals in Other Verilog Simulators

For Verilog-XL, NC-Verilog, and ModelSim, every window signal to be viewed needs to be individually specified.
code required is most easily placed in the SWIFT template produced by thevsg command, as described in Section 8.1.3
"SWIFT Template Generation". The format of the enabling code is:

$lm_monitor_vec_map(<verilog_register>, “<instance_path_to_m4ke_vmc_model>”,
“<window_signal_name>”);

In the SWIFT template created byvsg , the <verilog_register> statements exist in the template but are dangling.
Dangling registers can be used in the command required to enable each window signal. Here is an example of t
required to view some specific window signals:

initial
begin
$lm_monitor_vec_map(RF1, “<instance_path_to_m4ke_vmc_model>”, “RF1”);
$lm_monitor_vec_map(RF2, “<instance_path_to_m4ke_vmc_model>”, “RF2”);

CPZ_x [31:0] Contents of Coprocessor 0 register xxx. All possible 4KE COP0 registers are included, but TLB-rela
ones are not valid when using the Fixed Block Address Translation instead of the TLB.

RFx_xx [31:0] Contents of the General Purpose Register File. Shadow register sets are denoted by the first numbe
register number by the second.

InstnVirtual
Address [31:0] Virtual Address for the Instruction Fetch.

InstnPA [31:12] Physical Address for the Instruction Fetch (bits [11:0] are untranslated and thus the same as the V

InstnCacheable [0] Indicates whether the Instruction Fetch is a cacheable reference.

ICacheHit [0] Indicates that Instruction reference hit in the I$.

InstnData [31:0] Instruction Data returned for Instruction Fetch.

Data Virtual
Address [31:0] Virtual Address for the Load/Store reference.

DataPA [31:12] Physical Address for the Load/Store reference (bits [11:0] are untranslated and thus the same as th

DataCacheable [0] Indicates whether the Load/Store reference is cacheable.

DCacheHit [0] Indicates that Load/Store reference hit in the D$.

LoadData [31:0] Load Data returned on a Load.

BusType [2:0]
Indicates what type of Load/Store operation is occurring. Use to qualify DataVA etc.

0-No operation, 1-load, 2-store, 3-prefetch, 4-sync, 5-ICacheOp, 6-DCacheOp

BIU_LWptr [3:0]

Bus Interface Unit read transaction tracking. LWptr is bumped every time a read address is accepte
the system. LRptr is bumped every time read data is returned. When LWptr != LRptr, the 4KE core 
waiting for read data to be returned. Useful for debugging system problems. Core “hangs” are often
result of a system not returning all requested data.

BIU_LRptr [3:0] See above.

Table 8-1 Core Signals Visible in VMC model (Continued)

Name Bits Description
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8.1.6 VMC Simulation Configuration

The VMC model is configurable so that all functionally visible features of the 4KE core are visible. The available op
are shown in Table 8-2 and include processor type (4KEc, 4KEm, or 4KEp core), cache organization, selection of v
functional features within the core, and debug switches that determine whether optional trace files are produce
configuration is performed by setting up a memory file which is read in and used to select between the different mo
The memory file is calledmemory.m4k_config  and needs to be in a SWIFT readmem format which is:

#Comment
<Address>/<Data>;

The available configuration options are shown in Table 8-2.

Table 8-2 VMC Configuration Options

Name
Addr
(hex) Description Legal Values Default

ICacheAssoc 1 Associativity of the instruction cache. 1,2,3,4 2

ICacheWaySize 2 Size of each way of instruction cache (in KB). 0(no I$), 1, 2, 4 4

DCacheAssoc 3 Associativity of the data cache. 1,2,3,4 2

DCacheWaySize 4 Size of each way of data cache (in KB). 0(no D$), 1, 2, 4 4

InitCaches 5 Magically flush caches at time 0 to avoid simulation
cycles for software cache initialization.

0 - No Magic Init

1 - Magic Init
1

BATMMU 6 Use Fixed Block Address Translation instead of TLB.

0 - Use TLB (4KEc core)

1 - Use Fixed MMU (4KEm
core / 4KEp core)

0

LITEMDU 7 Choose multiply/divide unit (MDU) type.

0 - Fast, high-performance
MDU (4KEc core/4KEm
core)

1 - Small, iterative MDU (4KEp
core)

0

EJSModule 8 Which EJTAG simple break module should be used.

0 - No SB

1 - 2I/1D SB

2 - 4I/2D SB

2

EJTModule 9 Use EJTAG TAP module.
0 - No TAP

1 - Use TAP
1

Inst A
Unique instance identifier. Tags output messages and
trace files to more easily support multiple instances.
Must be specified as a hex value.

0 - 3f (hex; corresponds to 0-63
decimal) 0

dispEn B Display Enable. Controls printing of warning or error
messages coming from the VMC model.

0 - No messages

1 - Messages
1

bus_trace D
Enables logging of all transactions on the cores EC
interface (external bus) to file
vmc.bus[.Inst].trace .

0 - No log

1 - Log bus transactions
1
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dumpTrace E Enables instruction trace to file
vmc[.Inst].trace .

0 - No tracing

1 - Trace file will be created
0

M16 PreWSModule F Use MIPS16 decode before the way-select mux
(cannot be set when option h’10 is also set). 0 - No MIPS 16 decode

1 - MIPS 16 decode included

0

M16 PostWSModule 10 Use MIPS16 decode after way-select mux
(cannot be set when option h’F is also set). 0

CP2Module 11 Include Coprocessor 2 interface module.
0 - No CP2 Interface

1 - CP2 Interface included
1

PDTModule 12 Include EJTAG PDtrace and Trace Control Block
modules

0 - No trace blocks

1 - PDtrace and TCB blocks
included

0

UDI 13

Indicates that user-defined instruction (UDI) features
are present. This field only affects the setting of a bit
in the CP0 register (Config.UDI). The VMC model
does not emulate the actual function of UDIs.

0 - No UDI present

1 - UDI is present
0

Gated clocks for
ucreg 14

Indicates whether gated clocks are used internally for
certain unconditional registers whose state is a logical
don’t care in certain situations. This field does not
affect the instruction-level or cycle-by-cycle
functionality of the core, but can affect the state as
seen at the pins.

0 - No gated clocks for ucregs

1 - Gated clocks present for
ucregs

1

I-side ScratchPad 15

Indicates that an I-side ScratchPad is present. The
scratchpad logic is customer defined and not included
in the VMC model. This bit only affects the setting of
a config bit in a Cop0 register (Config3.ISP)

0 - No I-side ScratchPad

1 - I-side ScratchPad
0

D-side ScratchPad 16

Indicates that an D-side ScratchPad is present. The
scratchpad logic is customer defined and not included
in the VMC model. This bit only affects the setting of
a config bit in a Cop0 register (Config3.DSP)

0 - No D-side ScratchPad

1 - D-side ScratchPad
0

PDtrace dump enable 17

This bit enables the creation of files tracing activity on
the internal PDtrace and TCB interfaces, to files
vmc[.Inst].pdtrace  and
vmc[.Inst].tcbtrace .

0 - No tracing

1 - tracing enabled
0

TCB On-chip 18 Select whether the TCB (Trace Capture Buffer) has an
on-chip memory interface or not

0 - No on-chip memory

1 - On-chip memory present
1

TCB On-chip Size 19 Size of the on-chip TCB memory in 64-bit trace
words. Must be specified as a hex value.

5-14 (hex; 5-20 decimal):
On-chip memory is 2^^N trace
words

14

TCB Off-chip 1A Select whether the TCB has an off-chip memory
interface or not

0 - No off-chip memory I/F

1 - Off-chip memory I/F present
1

TCB Triggers 1B Number of TCB trigger registers implemented 0-8: N trigger registers 8

PIB Data Width 1C

Number of bits for the TRDATA port to the Probe
Interface Block (PIB). Must be specified as a hex
value.

Only valid for Lead Vehicle VMC models

4,8,10 (hex; corresponds to
4,8,16 decimal) 8

Table 8-2 VMC Configuration Options (Continued)

Name
Addr
(hex) Description Legal Values Default
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An examplememory.m4k_config  file is shown below:

# Memory Image File containing simulation configuration information
# Variable Number/Variable Value

#DCacheWaySize
4/2;
#ICacheWaySize
2/4;
#LITEMDU
7/0;
#BATMMU
6/0;
#EJSModule
8/2;
#EJTModule
9/1;
#DCacheAssoc
3/4;
#ICacheAssoc
1/4;
#InitCaches
5/0;
#Inst
A/0;
#dispEn
B/1;
#haltIt
C/1;
#bus_trace
D/1;
#dumpTrace
E/1;
#M16PreWS Module
F/1;

ICacheMemoryBist 1D

Selects whether the I-side Integrated Memory BIST is
enabled in the VMC model. Only one version of
MemBIST module is implemented, for the March C+
algorithm.

0 - No I-side Memory BIST

1 - I-side Memory BIST
1

DCacheMemoryBist 1E

Selects whether the D-side Integrated Memory BIST
is enabled in the VMC model. Only one version of
MemBIST module is implemented, for the March C+
algorithm.

0 - No D-side Memory BIST

1 - D-side Memory BIST
1

Global Clock-gate 1F

Selects whether the global clock gating for the WAIT
instruction is enabled. This switch will change the
exact cycle behavior just before, during and after a
WAIT instruction.

0 - No Global clock-gating

1 - Global clock-gaiting enabled
1

Watch Registers 22 Selects the number of watch channels that exist within
the core 0-8: N pairs of watch registers 1

GPR Shadow Sets 23 Selects the total number of General Purpose Register
shadow sets

1 - One GPR is present

2 - Two GPR sets are present

4 - Four GPR sets are present

1

Table 8-2 VMC Configuration Options (Continued)

Name
Addr
(hex) Description Legal Values Default
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#M16PostWS Module
10/0;
#Cop2 Interface Module
11/1;

8.1.7 Trace Files

The VMC model is capable of producing two types of trace files: a log of all transactions on the EC interface and a
of all instructions executed.

8.1.7.1 EC interface Trace

The bus trace file (vmc.bus[.Inst].trace ) contains information about all transactions on the EC interface. T
fields in this file are:

• Idle: Indicates how many idle cycles immediately preceded this transaction on the bus. For bursted transacti
value for the first beat of the burst is used for all beats of the burst.

• Pipe: Indicates the pipeline depth - how many transactions were outstanding when this transaction started. Ag
beats of a burst reflect the value for the first beat of the burst.

• Type: Transaction type: RI- Instruction read, RD- Data read, W- Data write.

• Beat: Indicates which beat of the burst this is and the total length of the burst. “1 of 1x” indicates a non-burst
transaction. “3 of 4” indicates the 3rd beat of a 4 beat burst.

• EB_A<35:0>: Address value.

• EB_R/WData<31:0>: Read or Write data. The value in parentheses is the valid mask. A zero in any bit positi
indicates that there was an x in the corresponding bit of the data.

• BE<3:0>: Byte Enables - indicates which byte lanes are active for this transaction.

• Error: Indicates whether or not a bus error was signalled on this transaction.

• A wait states: Indicates the number of address wait states seen by this transaction.

• D wait states: Indicates the number of data wait states seen by this transaction.

• Cycle: Indicates a cycle number when this transaction completed. (Cycles are counted from the falling edge 
first Cold Reset). For bursts, all beats of the burst report the cycle that the burst completed.

•

8.1.7.2 Instruction Trace

The instruction trace file (vmc[.Inst].trace ) tracks the instruction flow in the processor. The architectural-visib
effects of each instruction (register updates, memory writes, etc.) are also logged. The trace comes out in a ra
and is most easily read after a post-processing step. Thebin/rtlSort  script does this post-processing. It sorts the
trace file to group all lines associated with a given instruction, adds instruction disassembly (usingbin/MIPSdis ) and
slightly reformats the trace.

[Ins:4 0 Cyc:6 ]bfc00000 1fc00000 2:  00000000    NOP
|<-----a------>|<--------b-------->|<-------c------->|

a) Each line is tagged with an instruction number, sequence number, and a cycle number. Gaps in the instruction
sequence can occur near exceptions. The sequence number indicates a sub-instruction in a macro sequence
(SAVE/RESTORE instructions). This will be 0 for instructions that are not part of a macro sequence. The cycle nu
reflects the cycle at which the information was dumped. Most of the information is dumped from a canonical po
the pipeline, so most of the lines for a given instruction will have the same cycle number. The exception is the upd
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the HI/LO registers in the MDU. Because the MDU pipeline can run independently from the main pipeline, these re
updates can be reported in a different cycle.

b) For instructions that do not take a fetch exception, the first line of the instruction will be a fetch line. This field s
the hex values of the Virtual Address, Physical Address, and Cache Coherency Attribute (CCA) for the instruction
On the 4KE cores, only two of the eight CCA values are truly supported. When simulating a 4KE core, the entire
is not maintained in the ITLB, so the CCA for mapped instruction addresses will always be reported as 2 (uncach
or 3 (cacheable).

c) This field is the instruction opcode and disassembly.

[Ins:954 0 Cyc:8166 ]Write GPR[26][1]= 80024230(ffffffff)
|<--------a-------->|<------d------->|<-------e------->|

d) This indicates that the instruction caused a register update. Possible registers are GPR[1-31] for the general
registers, HI and LO for the MDU registers, and C0* for Coprocessor Zero registers. The second bracketed ter
indicates the shadow set for GPR writes. It is omitted if the write is to shadow set 0.

e) This is the data value in hex. The value in parentheses is the valid mask. A 0 indicates that the correspondin
the data was an x. A dash in the data value is used for sub-word loads and stores to indicate invalid bytes on the m
read/write line.

[Ins:972 0 Cyc:8359 ]Mem Read [80024168 00024168 3] = 00000000(ffffffff)
|<---------a------->|<---f--->|<--------g-------->|<---------e-------->|

f) This is for memory accesses.

• Mem Read indicates a load that missed in the cache and went to memory.

• Cache Read indicates a load that hit in the cache.

• SPRam Read indicates a load that hit in the scratchpad RAM

• Probe Read indicates a load that went to DRSEG in EJTAG space

• Mem Alloc Write indicates a store that missed in the cache and caused a cache fill

• Mem AllocH Write indicates a store that missed in the cache, but matched in the store buffer or write through

• Mem Write indicates a store that either hit in the cache or did not cause a cache allocation

• SPRam Write indicates a store that hit in the scratchpad RAM

• Probe Write indicates a store that went to DRSEG in EJTAG space

g) This is the virtual address, physical address, and cache coherency attribute for the data access.

[Ins:127 0 Cyc:1838 ]# Branch Taken
[Ins:2 0 Cyc:0 ]# PDT Mode Change 0: AllowOverflow TraceNormalBranch
|<-----a------>|<-------------------------h------------------------>|

h) Lines beginning with a # are comments. These do not track architectural state. These comments provide ad
information about program flow and processor state that is used in our internal verification environment. For ex
the two lines above show a comment tracking a branch condition and one indicating the PDtrace mode.

[Ins:187 0 Cyc:1978 ]Write TLB Entry[15]: PageMask(mask) = 00000000(ffffffff)
[Ins:187 0 Cyc:1978 ]      TLB Entry[15]: EnHi(mask)     = 80000000(ffffffff)
[Ins:187 0 Cyc:1978 ]      TLB Entry[15]: EnLo1(mask)    = 00000000(ffffffff)
[Ins:187 0 Cyc:1978 ]      TLB Entry[15]: EnLo0(mask)    = 00000000(ffffffff)
|<--------a-------->|<-------------------------i--------------------------->|
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8.1.8 Simple Testbench

To simplify bring-up of the VMC model, a simple testbench is included in the directory
$MIPS_PROJECT/vmc_sun/verification . This testbench can be used to verify that the VMC model is install
correctly and shows examples of how to use it. The testbench ties off many of the 4KE inputs not directly related
memory access portion of the EC interface. It has a Verilog memory that is loaded from thetest.hex  file. The
includedtest.hex has a simple boot sequence that executes a few instructions, then does a store to a trick box
system model. When that store is seen, the system model does a $finish to stop the simulation.

In order to use the VMC model, a Verilog template is needed. This template is specific to the simulator (includi
particular version in some cases). See Section 8.1.3, "SWIFT Template Generation" for details on how to crea
template. There are two sample templates in theverification directory:m4ke_vmc_model.vcs.v is a template
for vcs, andm4ke_vmc_model.vxl.v  is a template for Verilog-XL, ModelSim, and NC-Verilog.

The Makefile in$MIPS_PROJECT/vmc_sun/verification provides targets for building the VMC model in
this testbench. Support for several simulators is included.

8.1.9 Multiple VMC Instances

It is possible to instantiate multiple 4KE VMC models to simulate a multi-CPU system. The SWIFT template file
parameterized to control which configuration file is read. By reading a unique configuration file, each instance 
configured differently. By specifying unique instance tags in the memory file, the log output and trace files from
different models can be distinguished. The following example shows how this multiple instantiation can be
accomplished. The following Verilog code will instantiate two VMC models, with instance names “vmc1” and “vm
which will read thememory1.m4k_config andmemory2.m4k_config configuration files. Note that the unique
configuration files with the desired options for each instance must be manually created, as described in Sectio
"VMC Simulation Configuration" on page 90.

m4ke_vmc_model vmc1 (....);
defparam vmc1.InstanceName = “vmc1”;
defparam vmc1.MemoryFile = “memory1”

m4ke_vmc_model vmc2 (...);
defparam vmc2.InstanceName = “vmc2”;
defparam vmc2.MemoryFile = “memory2”;

8.1.10 Assertion Checks

A variety of assertion checks are embedded within the 4KE VMC model. These checkers look for error condition
unknown states on critical signals. These checks are divided into a few basic categories:

• Fatal HW Errors - These errors should never occur and indicate a problem with the CPU. MIPS support
(support@mips.com) should be contacted with the details of the problem.

• Fatal SW Errors - These errors indicate that the chip cannot proceed due to unknown states on internal signals
errors can be caused by faulty software or incorrect chip hook up.

• XWarning - This indicates an unknown state inside the chip from which it is theoretically possible to recover.
Typically, these warnings will give a more descriptive message and better point to start debugging from than 
eventual Fatal SW Error.

• I/O Warning - This indicates that the chip is possibly not hooked up correctly. For example, this will be flagged
reset inputs are asserted for more than 2000 cycles. This is symptomatic of someone assuming that the rese
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are active low rather than active high, but might be the desired behavior in the system testbench or simulatio
environment. These events are classified as warnings and not fatal errors.

• Fatal I/O Errors - These errors indicate illegal conditions on the primary I/O. Examples of this include undrive
inputs or an insufficient reset pulse width.

• Fatal Config Errors - These errors indicate that the processor configuration is not valid.

Recall that configuration options are available to enable or disable the display of these assertion messages, and t
whether or not a fatal error will stop simulation; see Section 8.1.6, "VMC Simulation Configuration" on page 90 for
details.
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Chapter 9

Clocking, Reset and Power

This chapter describes the clocking and initialization interface on a MIPS32™ 4KE™ processor core, when the
integrated into a system environment. The power-reduction features available on a 4KE core are also discusse

This chapter contains the following sections:

• Section 9.1, "Clocking"

• Section 9.2, "Reset and Hardware Initialization"

• Section 9.3, "Power Management"

9.1 Clocking

There are potentially two input clocks that must be generated and driven to a 4KE core. The main clock input is n
SI_ClkIn,and exists on every 4KE core. An optional clock input is calledEJ_TCK, and is only present if an EJTAG TAP
controller is implemented within the core. Both clocks are used internally at 1x their respective input frequencie
frequency multiplication or division is performed internally. No phase-locked loop is present within the 4KE core
Typically no minimum frequency is required, so the frequency of the input clocks can be quickly changed or stop
desired, as long as edge rate integrity is maintained.

The following discussion describes general clocking characteristics of a typical 4KE core implemented with a sta
ASIC physical design methodology. It is possible that a specific hard core implementation may differ from the ge
clock guidelines discussed here; e.g., dynamic circuit implementation techniques may mandate that a minimum
frequency be met for a particular hard core. So the general clocking assumptions described here must be valid
the specific 4KE core that is being integrated before proceeding with system clock design.

9.1.1 SI_ClkIn Clock

SI_ClkInis the primary 1x input clock to the 4KE core and is used to enable the vast majority of sequential logic, a
as time the synchronous SRAMs normally used to implement the caches, within the 4KE core.

Only the positive edge of theSI_ClkInclock is used internally to the core, so there is no specific duty cycle requirem
Transparent-low latches usually do exist within the core, so the duty cycle should still be within 40-60% of the p
Since no dynamic logic or PLL is present, the minimum frequency is 0 MHz; i.e.,SI_ClkIn can be stopped if desired.
The maximumSI_ClkIn frequency depends on the specific 4KE core implementation.

9.1.2 EJ_TCK Clock

EJ_TCK is an optional 1x clock input to the 4KE core, only existing if the core implements an EJTAG TAP contr
EJ_TCK is the test input clock used to synchronize the serial shifting of data into and out of the TAP controller. 
EJ_TCK clock is completely asynchronous to theSI_ClkIn clock, in terms of both frequency and phase.

The minimum frequency ofEJ_TCKis 0 MHz, and can be stopped when the TAP controller is not used. The maxim
frequency is specified as 40 MHz (25 ns period), due to limitations of the probes that usually interface to the EJTAG
port. Both the rising and falling edges ofEJ_TCKare used to control flops. The minimum clock high and low times a
specified as 10 ns, yielding a duty cycle requirement of 40 to 60% at 40 MHz.
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9.1.3 Handling Clock Insertion Delay

When a 4KE core is implemented, clock trees are usually created to buffer and distribute theSI_ClkIn andEJ_TCK
clocks throughout the core. These clock trees impart a finite delay from the primary clock inputs to the eventua
of the buffered clocks at the sequential elements within the core. The exact amount of clock insertion delay is a
characteristic of each specific 4KE core implementation.

The clock insertion delay presents an issue that must be managed when the 4KE core is instantiated in the res
system. Any clock insertion delay from the clock input to the actual clock usage at the sequential elements for 
primary inputs and outputs of the core reduces the primary input setup times, but increases the input hold times
as the clock-> out delays on the primary outputs. Since most 4KE core inputs are received directly by flops, an
core outputs come directly from flops, the setup and hold times for the primary inputs and outputs can be balance
system level.

Several different techniques can be used to manage the 4KE core’s internal clock insertion delay:

• Tolerate the core clock insertion delay at the system level, if possible, within the system logic that interfaces 
4KE core. This may entail adding delay elements when driving inputs, so hold times are not violated, and rec
“late” outputs, reducing the number of logic stages that can exist in the same cycle the outputs are driven sin
clock insertion delay is visible. This may not be acceptable for all system designs, but is usually the simplest
approach.

• When creating the system clock tree for the sequential logic that interfaces to the 4KE core, match this system
to the core’s internal insertion delay. Clock tree generation tools have the ability to match relative clock delay
knowing the core’s internal clock insertion delay will allow the internal clocks to be specified as matching poi
(within reasonable skew limits). With this approach, input hold times and output delays can be minimized wh
allows more time in the cycle for useful work.

• Use theSI_ClkOutreference clock.SI_ClkOutis an output of the 4KE core that is tapped from the internal clock tr
so that it is identical (within reasonable skew limits) to the clock seen by the sequential elements within the 4
core. The difference betweenSI_ClkInandSI_ClkOutrepresents the clock insertion delay of the primary clock use
within the 4KE core. (Note that there is no corresponding reference clock output for theEJ_TCK clock, so this
technique cannot be applied to that clock domain.) Due to loading limitations, theSI_ClkOutclock probably can’t be
used directly to control system logic that interfaces to the core, but it can be used, for example, as the referenc
to a de-skewing phase-locked loop in the system to “hide” the core’s clock insertion delay.

9.2 Reset and Hardware Initialization

Hardware initialization is accomplished through theSI_ColdReset, SI_Reset andSI_NMI input pins, and via the
EJ_TRST_N pin if the optional EJTAG tap controller is present within the 4KE core. This section describes how 
pins are typically used in systems. These reset input pins must always be driven either to a logic “1” or “0” to th
core, and not left floating or indeterminate. Each of the reset-relatedSI_* inputs triggers a different type of exception
within the 4KE core; the MIPS32 4KE™ Processor Core Family Software User’s Manual [1] describes more details
about these exceptions.

The initialization process for a 4KE core requires a combination of hardware and software. This section describ
basic hardware initialization interface. In accordance with the MIPS32 Architecture, only a minimal amount of st
reset by hardware; so much internal state, like the Translation Look-Aside Buffer (TLB) and the cache tag arrays
be initialized via software before it can be used. See Reference [1] for a description of the software initializatio
requirements of a 4KE core.
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9.2.1 SI_ColdReset

The high-activeSI_ColdReset input is a hard reset signal that initializes the internal hardware state of the 4KE co
without saving any state information. This input is active-high and must be asserted for a minimum of 5SI_ClkIncycles.
The falling edge triggers a reset exception that is taken by the core as the highest priority. Typically,SI_ColdReset is
driven by a power-on-reset circuit in the system. For reliable operation, the power supply must be stable and theSI_ClkIn
clock must be running beforeSI_ColdReset is deasserted.

9.2.2 SI_Reset

The high-activeSI_Resetinput is a warm reset input to the 4KE core. The input is active-high and must be asserte
a minimum of 5SI_ClkIn cycles. The falling edge triggers a soft reset exception which is taken by the core. Typi
SI_Resetis driven by the OR ofSI_ColdResetand the reset “button” in the system. Historically, MIPS processors ha
required Reset to be asserted during a ColdReset. The 4KE core does not require this, so an assertion ofSI_ColdReset
does not need to force the assertion ofSI_Reset.For reliable operation, the power supply must be stable and theSI_ClkIn
clock must be running beforeSI_Reset is deasserted.

Within the core,SI_ColdResetandSI_Resetare handled almost identically. The only difference is thatSI_Resetsets the
StatusSR field to identify a soft reset exception.

9.2.3 SI_NMI

TheSI_NMIinput signals a non-maskable interrupt (NMI). This signal is active high and rising edge sensitive, but
be asserted for a minimum of one clock cycle in order to be recognized. The sampling of the rising edge triggers a
exception to be taken by the core. Typically,SI_NMIis used to indicate time-critical information, like impending loss o
power in the system.

9.2.4 EJ_TRST_N

An additional reset signal is required when the EJTAG TAP controller is present.EJ_TRST_Nis an active low reset signal
that resets the TAP controller. This is an asynchronous reset and neitherEJ_TCKor SI_ClkInneed to be toggling for it
to take effect.EJ_TRST_N must be asserted during power-on reset in order for the TAP controller and processor
properly initialized. In general, the low-asserted pulse width should be the equivalent of at least oneEJ_TCKcycle wide.

9.3 Power Management

Two primary mechanisms exist for managing system power with a 4KE core: the hardware method of slowing do
stopping) the primarySI_ClkInclock and the software method of initiating “sleep” mode via the execution of the WA
instruction.

9.3.1 ReducingSI_ClkIn Frequency

The most global method of power control is to hold the primarySI_ClkIninput static, or at a lower frequency, when the
4KE core is not in use, if desired by your system logic. The 4KE core is internally fully static so the clock can b
either high or low, and the input frequency can be changed from maximum to a lower frequency, including zero
vice-versa) in a single cycle since there is no internal PLL.

The core outputs some pins which can be used, if desired, by the system logic to control entry or exit to this low-
state. TheSI_RP output is directly driven from the internal CP0 Status register, as an external indication that it is
desirable to place the 4KE core in a low-power state by reducing the clock frequency. When the RP bit in the S
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register is set by software, system logic can detect the assertion of theSI_RP output and choose to place the 4KE cor
in a lower power state by reducing the clock frequency. Additionally, theSI_ERLandSI_EXLoutputs, derived from the
ERL and EXL bits in the Status register, indicate that an error or exception has been taken, and can be sensed
the clock frequency up again if desired.EJ_DebugM indicates that a debug exception has been taken. This can als
used to speed the clock back up. These output pins need not be used to control the core’s clock frequency, if othe
logic is available to indicate that the 4KE core is not being used.

9.3.2 Software-Induced Sleep Mode

Upon execution of the software WAIT instruction, the 4KE core will enter a low-power state once all outstandin
activity has completed. Most of the clocks in the 4KE core will be stopped, but a handful of flops will remain activ
sense an external hardware event that will awaken the core again. The external events that can wake the core ba
any enabled interrupt, NMI, debug interrupt (viaEJ_DINT), or reset. Power is reduced since the global gated clock go
to the vast majority of flops within the 4KE core is held idle during this sleep mode. TheSI_Sleep pin will be asserted
when the core enters this low power mode. This can be used by the system logic to achieve further power savings
will be no bus activity while the core is in sleep mode, so the system bus logic which interfaces to the 4KE core
be placed into a low power state as well.
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Chapter 10

Design For Test Features

This chapter describes the Design For Test (DFT) features of the MIPS32™ 4KE™ processor core. The MIPS-su
DFT features are optional, so their existence on a particular core is dependent on choices made during impleme

This chapter contains the following major sections:

• Section 10.1, "Introduction"

• Section 10.2, "Scan Test"

• Section 10.3, "Integrated RAM BIST"

• Section 10.4, "User-Specific RAM BIST"

10.1 Introduction

An implementation of a 4KE core may contain DFT features useful for supporting manufacturing test of the core w
an SOC environment. Typically, the DFT features will include one or more of the following:

• Scan test

• Memory BIST using integrated controllers

• Memory BIST using a user-specified method

• Other implementation-dependent features

Table 10-1 summarizes the key pin usage related to test modes present on the core. This table should be cons
typical usage only, and other documentation related to the implementation details of a specific core must be co

Table 10-1 Core Input Values for Major Operating Modes

Input Pin

Mode

Normal (non-test) Scan Integrated BIST
User-specified

BIST

SI_ClkIn toggles toggles toggles toggles

EJ_TCK toggles when TAP active toggles - -

SI_ColdReset asserted for initialization - 1 impl-dependent

gscanmode 0 1 0 0

gscanenable 0
1: chain operation

0: capture cycles
0 0

gscanramwr 0
assert during capture

cycles for RAM strobe
control

0 0

gmbinvoke 0 0 1 0

BistIn[n:0] 0 0 0 impl-dependent
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The remaining sections in this chapter discuss the major test modes in more detail.

10.2 Scan Test

The scan methodology normally used on a 4KE core is muxed scan. The exact scan functionality is dependen
choices made when the core was created. Specific details about scan operation are therefore implementation-d
and beyond the scope of this document, but a few general comments are worth noting.

Three specific scan control pins besides the actual scan chain inputs and outputs are normally present. The sca
pins are:gscanramwr, gscanmodeandgscanenable. If the scan insertion scripts for Mentor DFTAdvisor, provided with
a soft 4KE core, have been used for the scan insertion, then the scan-chains inputs and outputs are normally c
gscanin_x andgscanout_x, where x is an integer greater than or equal to 0 identifying the input and output of eac
separate scan chain.

With muxed scan, the two primary inputs clocks,SI_ClkIn andEJ_TCK, must be running when the scan chains are
loaded and unloaded. During a capture cycle(s), one or both of the primary clocks may be active.

The typical use of the scan control pins is illustrated in Figure 10-1. Note that this figure denotes typical scan ope
only, and may not be relevant for a specific core.gscanmodemust be asserted during any scan operations.gscanenable
is asserted when the scan chains are loaded and unloaded, but not during the capture cycles. The timing ofgscanramwr
is not shown in the figure, but it must be stable around the capture cycle(s) and can be used to control the read a
strobes for cache arrays, if the SRAMs are handled as a bypass flop during scan mode.

Figure 10-1 Timing Diagram of Typical Scan Chain and Capture Operation

10.3 Integrated RAM BIST

The 4KE core may optionally include an integrated BIST controller to test the cache SRAMs within the core. S
signals present on the core interface, prefixed bygmb, are specifically dedicated to integrated RAM BIST. These signa
are always present on the core, but whether they are active or not is implementation-dependent. In addition to thgmb*
signals, some other signals are also active when using integrated RAM BIST.

The integrated BIST controller is capable of supporting two algorithms, March C+ or IFA-13. (IFA-13 includes sup
for retention testing.) The algorithm present (if any) is a build-time option chosen when the core is created.

10.3.1 RAM BIST-related Interface Signals

This section describes the relevant core interface signals for launching an integrated BIST test and reporting the

SI_ClkIn

EJ_TCK

gscanmode

gscanenable

gscanin_x

gscanout_x

Max Chain Depth
cycles capture

Max Chain Depth
cycles capture
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10.3.1.1 Clocking

The clock for integrated memory BIST is provided by the primary clock input,SI_ClkIn. SI_ClkInmust be running while
thegmbinvokeandSI_ColdResetsignals are asserted and for at least the first cycle aftergmbinvokeis deasserted, in order
to perform and complete a BIST test. TheEJ_TCKinput clock is unused for integrated BIST and may be driven to a
value.

10.3.1.2 Reset

SI_ColdResetmust be asserted while integrated memory BIST is running. This forces the main clock tree derived
SI_ClkIn to be running, since it could have been disabled by WAIT-induced sleep mode or unknown at power u
SI_ColdReset should be asserted at least 5SI_ClkIn cycles prior to the assertion ofgmbinvoke, and held asserted for at
least one cycle after the deassertion ofgmbinvoke.

10.3.1.3 Invoke

The primary enable signal to activate integrated memory BIST isgmbinvoke. Thegmbinvoke signal should only be
asserted whileSI_ColdReset is also asserted. After BIST testing is completed andgmbinvoke is deasserted, a normal
SI_ColdReset sequence should be applied to reset the processor for non-BIST operation.

10.3.1.4 Done Indication

When the BIST test is completed,gmbdone is asserted. If the memory BIST test is performed for both I-cache and
D-cache,gmbdoneis asserted only when both tests are done. Whengmbinvokeis deasserted,gmbdoneis deasserted in
the following cycle.

10.3.1.5 Fail Indication

Separate fail signals exist for each sub-array in both the instruction and data caches. If a failure occurs during th
fail signal is asserted accordingly:gmbddfail, gmbtdfail, gmbwdfail, gmbdifail, gmbtifailand/orgmbwifail. The fail
signals are related to specific cache arrays as shown in Table 10-2. Whengmbinvoke is deasserted, all fail signals are
deasserted in the following cycle.

10.3.1.6 gscanenable

The gscanablesignal enables the scan chain operation. When memory BIST test is running,gscanenable must be
deasserted low.

Table 10-2 Fail Signals

Fail Signals

Instruction Cache Data Cache

Data
Memory

Tag
Memory

Way-Select
Memory

Data
Memory

Tag
Memory

Way-Select
Memory

gmbdifail X

gmbtifail X

gmbwifail X

gmbddfail X

gmbtdfail X

gmbwdfail X
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10.3.1.7 gscanmode

Thegscanmodesignal enables scan test mode. When memory BIST test is running,gscanmodemust be deasserted low

10.3.2 RAM BIST Signal Waveform for a Memory Test

A diagram with the timing of an integrated memory BIST sequence is shown in Figure 10-2.

Figure 10-2 RAM BIST I/O Signals Timing

10.3.3 Number of Cycles for Memory BIST

The number of cycles for integrated memory BIST is determined by:

For the March C+ algorithm, NumberofOperations per bit is 14. For the IFA-13 algorithm, NumberofOperations p
is 16.

10.4 User-Specific RAM BIST

User-specific RAM BIST utilizes the top-levelBistInandBistOutbuses to test the cache or on-chip trace SRAM array
The usage and meaning of these pins are implementation-dependent.

Depending on a specific implementation, some of the scan related pins andSI_ColdReset might have to be asserted to
specific values during User-specified RAM BIST mode. It is normally required that theBistInbus be tied to all zero’s to
enable normal functional mode and disable any User-specific RAM BIST.

SI_ClkIn

SI_ColdReset

gmbinvoke

gscanenable

gscanmode

gmbfail

gmbdone

Cycles WithoutSPRAM( ) WaySize kBytes( ) 1024 8×( ) bit
kByte
--------------- 

  cycle
bit

-------------- 
  Associativity× NumofOperations 32cycles+××=

Cycles WithSPRAM( ) WaySize kBytes( ) 1024 8×( ) bits
kByte
--------------- 

  cycle
bit

-------------- 
  MaxAssociativity× NumberofOperations

SPRAMSize kBytes( ) 1024 8×( ) bit
kBytes
------------------ 

  cycle
bit

-------------- 
 × 32cycle

+

+

××

s

=

104 MIPS32™ 4KE™ Processor Core Family Integrator’s Guide, Revision 02.00

Copyright © 2001-2002 MIPS Technologies Inc. All rights reserved.



10.4 User-Specific RAM BIST
If User-specific RAM BIST is not implemented, then simply tie theBistInbus to all zero’s and ignore theBistOutoutput
bus.
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document. These documents may be included in the$MIPS_PROJECT/doc  area of a typical 4KE soft or hard core
release, or be available on the MIPS web site, underhttp://www.mips.com/publications/index.html.

1. MIPS32™ 4KE™ Processor Core Family Software User’s Manual
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2. EC™ Interface Specification
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3. EJTAG™ Specification
MIPS document: MD00047

4. EJTAG Trace Control Block Specification
MIPS document: MD00148

5. Core Coprocessor Interface Specification
MIPS document: MD00068

6. MIPS32™ Architecture For Programmers Volume III: The MIPS32™ Privileged Resource Architecture
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7. MIPS64™ 5Kc™ Processor Core Software User’s Manual
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Revision History

Table B-1 Revision History

Revision Date Description

00.90 Nov 28, 2000 • Initial revision.

00.91 February 16, 2001

• Added description about runningswiftcheck  to verify the VMC
installation.

• Reworded some of the explanations about never sending a nullify to any
coprocessor instructions.

• ChangedMIPS4KHOME environment variable toM4KHOME.

• AddedSI_SimpleBE[1:0] signals to control limited byte enable
combinations on the EC interface.

• Removed sysad option fromSI_MergeMode[1:0].

01.00 March 27, 2001

• Standardized section links at the beginning of each chapter.

• Minor updates to SimpleBE description.

• RemovedCP_fr32_0 signal, this is a CP1 pin only.

• Added memory bits for the VMC module configuration for MIPS16 and
CP2 IF modules.

01.01 May 17, 2001

• Added description of interface pins related to integrated memory BIST
feature inTable 2-3.

• Modified section on coprocessor exception signaling for clarity.

01.02 June 12, 2001
• Added Chapter on DFT features.

• Cleaned up some pin descriptions.

01.03 July 13, 2001 • Minor grammar updates.

01.04 August 29, 2001

• Reworded Section 4.1.2.2, "Multiplexed Pin Access" on page 37, to not
claim violation of EJTAG spec. as this was not true.

• Added EJTAG Trace information: TCtrace core <-> PIB pins to pinlist,
and information in Section 4.4, "EJTAG Trace" on page 42.

• Added thegscanramwr pin to the pinlist.

• Added reference appendix.

• Included new options for VMC model.

• Added availability of VMC model on x86 Linux platform.

• Added more details to DFT chapter.

• Noted that interrupt pins are level sensitive and not prioritized by HW to
answer a F.A.Q.

01.05 October 4, 2001 • Changed confidentiality level for 4KE document to “commercial”; no
functional changes.
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01.06 December 5, 2001

• Added Mem-BIST and global clock gate VMC switches to Table 8-2.

• Fixed documentation errors with VMC option numbering in Table 8-2.

• Further description of EB_EWBE signaling.

• Added descriptions for external SPRAM signals in Chapter 2, “Signal
Description,” on page 3.

• Added new chapter describing external SPRAM interface in Chapter 6,
“Scratchpad RAM Interface,” on page 59.

01.07 December 10, 2001

• Clarified that SPRAM signals are only held during a stall if a transaction
is really outstanding, inTable 6-1.

• Corrected error inISP_DataTagValue pin name. Modified references
from ISP_DataWrValue to ISP_DataTagValue, to reflect proper pin
name.

• Corrected some hyperlinks in Chapter 6, “Scratchpad RAM Interface,”
on page 59, which were not showing up as blue in the pdf.

01.08 January 25, 2002

• Added new chapter describing performance monitor pins, Chapter 7,
“Performance Monitoring Interface,” on page 83.

• Removed references to the filenames of related pdf documents, since
those filenames are now explicitly identified by the MIPS MDxxxxx
document number.

02.00 November 8, 2002

• Added legal footer to Chapter 7, “Performance Monitoring Interface,” on
page 83.

• AddedCP2_kd_mode_0 pin.

• Clarified description of fastest EC write transaction, inSection 3.1.3,
"Fastest Write Transaction".

• Corrected use of “maximum” and “minimum” in description of
TC_CRMax andTC_CRMin signals inTable 2-3 on page 4.

• Modified wording in Section 9.1.3, "Handling Clock Insertion Delay",
since not all SPRAM interface signals are fully registered.

• Updated Simulation Models chapter with more recent VMC information

• Various updates to describe new MIPS32 Release 2 capabilities, included
in version 3.0 or higher core releases.

Table B-1 Revision History

Revision Date Description
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